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42 R.J.DONNELLY AND P. H. ROBERTS

The problem of the appearance of quantized vortex lines and rings in superflow, and the modification of
that flow by the vortices, is examined in the light of a suggestion by Iordanskil, namely that thermal
fluctuations may play a vital role in the nucleation process. The view is taken that there exists a distribution
of quantized vortex rings in liquid helium and that the smallest of these is a roton. The evolution of these
rings in a counterflow is examined by means of a Langevin equation. A Fokker-Planck equation is
developed, and a number of examples are presented which illustrate the features of such processes. These
include nucleation of vortices in an unbounded fluid, nucleation in a finite channel, the thermally
activated vortex mill, nucleation of vortices by ions and phonon-roton relaxation times.

1. INTRODUCTION

The problem of critical velocities in liquid helium has been under examination for many years.
The first indication of a mechanism for limiting the velocity of pure superflow was Landau’s
idea that rotons could be produced at a boundary when the velocity of superflow coincided with
a certain group velocity for rotons. This indicated a rather high velocity, of order 60m/s, and
such velocities in helium 11 are approached only in ion experiments well below 1 K. Flow experi-
ments, on the other hand, exhibit critical velocities from centimetres per second to millimetres
per second. When quantized vortices were first proposed by Onsager and Feynman, it appeared
certain that these vortices, while insignificant thermodynamically, would exhibit dynamical
effects which would limit velocities to the lower values more consistent with experimental
observation. While there have been qualitative successes with such ideas, the quantitative
agreement between theory and experiment has been disappointing, the general experience being
that the calculated critical velocities are still too high. It appears, therefore, that the problem is
much more complex than had been anticipated, and some key physical ideas are still lacking.
For reviews of the subject of critical velocities the reader is referred to Vinen (1963).

Recently, Tordanskii (1965), in an elegant discussion, drew attention to the importance of
considering thermal fluctuations as a means of initiating vortex motion which can draw energy
from a superflow and subsequently grow to alter that flow. Later, Langer & Fisher (1967) and
Fisher (1968), stimulated by experiments on the decay of persistent currents (Kukich, Henkel &
Reppy 1968), emphasized the possible role of vortex nucleation by fluctuations in the decay of such
supercurrents. An illuminating summary of this point of view has recently appeared (Langer &
Reppy 1970).

The purpose of this paper is to develop the theory of fluctuations of quantized vortices from
first principles and apply it to a number of suitable problems. The plan is as follows: We examine
in § 2 the notion of distributions of quantized vortex rings in helium 11 and discuss the possibility
that the roton branch actually represents the low momentum end of the ring spectrum. We
develop in § 3 a Langevin equation for vortex rings, identify the relevant physical parameters,
and from this develop a Fokker-Planck equation. Formulac for the diffusion of rings over a
barrier are then developed by analogy to solutions given earlier by us (Donnelly & Roberts
19694).

Section 4 is devoted to an examination of spontancous vortex production in an unbounded
fluid, the Iordanskii problem. It is shown that this theory in its simplest form cannot account for
the observed features of the decay of persistent currents. There is a possibility that the failure
to agree with experiment arises from random lengths of vortex line pinned to protuberances in
the channels. The theory of thermal activation of such vortices, first postulated by Glaberson &
Donnelly (1966), is examined in § 5.

The effect of boundaries on nucleation is developed in § 6. This leads to an interpretation of
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NUCLEATION OF QUANTIZED VORTICES 43

depressed A-points in narrow channels or, more properly, to the concept of an onset temperature
T, for superflow. In an unbounded channel, 7§ coincides with the A-transition. In a finite channel
T, may be considerably lower than 7, owing to fluctuations of vortex rings. When flow is added
to the problem, the concept of the onset temperature has to be generalized. An interpretation of
some history-dependent effects in superfluidity may be given by speculating the presence of
vortex lines on the boundaries, whose density may depend on the preparation of the flow, and
which affect the motion far from the walls.

Another important class of nucleation experiment is the formation of vortex rings by ions.
We develop in § 7 the notion of localization of rotons near a moving ion and observe that these
rotons dramatically increase the drag on the ion. The probability that one of these rotons may
grow to critical size and nucleate an ion-ring complex is evaluated and compared extensively with
available experimental information. Here, unlike the channel flow problem, agreement with
experiment is quite striking.

The conversion of rotons to phonons by means of fluctuations is considered in §8. This
phenomenon is one contributing factor in the attenuation of sound in helium 1. The calculations
provide an alternative to the well-known collision studies of Khalatnikov.

The numerical work in this paper rests on many parameters, not all known to the accuracy
one could desire. We present the values we have adopted in an appendix, together with the
source of each estimate.

Throughout this paper we proceed in such a way as to try to minimize the number of new
assumptions. We have, for example, specifically not included entropy contributions to vortex
nucleation, which may be important, but which are (with the exception of the vortex wave
entropy at low temperatures) still a matter of considerable speculation. In the same spirit we
have adopted a vortex core radius of @ = 0.128 nm throughout, even though much evidence is
present to tell us that a is a function of temperature, pressure and perhaps even ®He concentration.
For example, a model advanced by Glaberson, Strayer & Donnelly (1968) calculates the radius,
R, at which the energy gap vanishes. This model suggests that R increases as 7" increases and
as the pressure P increases, but the details depend upon the magnitude of roton—roton interaction
assumed. Values which appear reasonable at the time of writing are Re = 0.212nm at 7' = 0K,
0.294nm at 1.0K, 0.522nm at 1.8 K and 1.22 nm at 2.1 K. Larger values of a will lower the free
energy barrier for nucleation and tend to improve the agreement with experiment. Nevertheless,
the uncertainty in both core entropy and core radius and their specific application to nucleation
theory compels us to leave the theory incomplete in these essential aspects.

Preliminary and highly condensed accounts of some of the topics discussed in detail below have
appeared elsewhere (Donnelly & Roberts 19694, ¢; Roberts & Donnelly 19704, b; Strayer,
Donnelly & Roberts 1971).

2. ROTONS AND QUANTIZED VORTEX RINGS
(a) Dispersion relations

We postulate that helium 1 contains a distribution of quantized vortex rings of all shapes and
sizes, oriented at random but carried on the moving superfluid. The smallest of these rings will
be those whose radius R approaches the radius a of the core. Since this radius is known to be of the
order of 0.1 nm, quantum effects are likely to become very important. In particular, since the

healing length for the wavefunction of the superfluid is also of order 0.1 nm, further reductions
6-2
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44 R.J.DONNELLY AND P.H.ROBERTS

in R will result in an increase in total energy owing to quantum localization effects. If we assume
the minimum energy of these rings is Ex, and the momentum corresponding to En is pm, the
number of such rings in thermal equilibrium can be computed by elementary statistical methods.
The population of states beyond En, will be filled by thermal collisions. The calculation we have
just described is identical to the calculation of the density of rotons in the superfluid if we take
En = Aand pm = p,in the usual notation. The idea that the ring spectrum should join the roton
dispersion branch is not new, and has been discussed in detail by Feynman (1955). The association
of rotons with rings has been taken to be literally true in this paper in order to make numerical
estimates quite definite, but no essential changes would result if 4 were replaced by Emn, and p,
by pm everywhere. We shall return to this point later.

There is no firm experimental evidence from neutron studies on the evolution of the dispersion
relation beyond p/# ~ 37nm~—'. The present data are summarized in figure 1, where the neutron
measurements are shown as solid lines (cf. Woods 1966; Cowley & Woods 1971). The lower
branch is the familiar Landau spectrum with phonons near D and rotons near A. Beyond E the
scattered neutron line width becomes too broad to follow. The upper branch appears to belong
to free particle excitations. At high energies the data points appear to join the parabolic dashed
curve, which represents free particles with the mass of the helium atom (Harling 1970).

-~
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-~

v E
<
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.~ | | l N |
0 20 40

(p/f) [nm=1

Ficure 1. Energy-momentum relation for quasi-particles in helium 1. The solid lines are determined experi-
mentally by neutron scattering. The dashed line on the left corresponds to free excitations having the mass of
a helium atom. The dashed curve on the right corresponds to vortex rings as given by equations (2.1) and (2.2).

Figure 1 presents data on the energy-momentum relation for excitations of the liquid
which are microscopic and devoid of thermal content. If we wish to join the branch DAE to a
branch of vortex rings, we must decide what quantities to plot on the same diagram. The variable
which plays the role of momentum for vortex rings is the impulse, p,

p = pskTR?, (2.1)

where pg is the superfluid density, R is the radius of the vortex ring and «( = %/m) is the quantum
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NUCLEATION OF QUANTIZED VORTICES 45

of circulation, m being the mass of the ‘He atom. An experimental demonstration of the connexion
between p and the usual notion of momentum of a particle has been given recently (for largef
vortex rings) by Gamota & Barmatz (1969).

The question of the energy and velocity of a vortex ring is more complex, and forms the subject
of a paper on vortex structure which will be published separately (Roberts & Donnelly 1971).
One problem is that the energy and velocity of vortex rings given by the classical expressions
are not, at first sight, connected by the Hamilton equationv = 0E/dp (see, for example, Rayfield &
Reif 1964). It turns out that these expressions are correct, but only under the assumption of
constant core volume. Experiments in liquid helium, however, are usually carried out at constant
pressure, and Roberts & Donnelly (19704) show in that case that the energy and velocity of a
vortex ring of radius R and core radius @ are given by

E = }ps®R[In (8RJa) ~ 4], (2.2)
and v = (k/4mR) [In (8R/a) — %], (2.3)

if we assume that the core is hollow, and that ¢ < R. Under conditions of constant pressure and
temperature, a is a constant, and » = 9E/0p. On this model, the energy in (2.2) is made up of the
kinetic energy of motion of the superfluid about the core, plus the potential energy arising by
displacement of fluid at constant pressure when the radius of the ring, and hence the volume of
the core, is changed. This model appears to be the simplest one can adopt, and we have used it
throughout this paper unless otherwise stated. If we re-analyse the experimental data of
Rayfield & Reif (1964), we find that the core radius on this model should be

a=0.128+0.013nm (7T = 0.28K). (2.4)

The two terms in square brackets in (2.2) may be regarded as the leading terms of an expression
in a/R involving both powers and logarithms. Beyond the terms shown, it is not correct to
consider the cross-section of the vortex core to be circular. Recently Fraenkel (1970, 1971, private
communication) has obtained a rigorous expansion procedure for the flow structure in the small
a/R limit, and has shown that (2.3) holds over a larger range of a/R than one might, at first sight,
expect. T

We show, by the dashed line on the right of figure 1, the energy and momentum of vortex
rings given by (2.2), (2.1) and (2.4). The low momentum part of the ring spectrum joins the
neutron data near E just where the neutron experiments show a vanishing scattering cross-section.
The vanishing cross-section is, perhaps, not too surprising, for near E we begin a régime of
completely different dynamics: to the left of E we have wavelengths given by A = £/p, to the right
we have a typical dimension R given by (p/ps k)%, The wavelength of the neutron probe is

t Since the core of the vortex is not circular to these higher orders, a and R must be re-defined, it being natural
to choose R as the mean of the nearest and furthest point of the core from the axis of symmetry, and a as \/(4/)
where 4 is the cross-sectional area of the core. Strictly, the result

v = (k/4TR)[(In8R/a—}) — }(a/R)2 (In8R[a— %) +...] (a/R - 0)

obtained by Fraenkel does not refer to the hollow vortex, but to the ‘uniform” model in which the vorticity of each
core element is proportional to its distance from the axis of symmetry. As a/R increases, the vortex core, Fraenkel
showed, becomes increasingly semicircular in shape [4 = §w(2R)% i.e. a/R = 4/2], and the flow increasingly
resembles that of the spherical vortex of Hill (1894) for which v = 4«/15mR & 0.267(x/mR). Even though one might
not expect the expansion of v displayed above to be reliable at such large values of a/R(= 4/2), it is in fact found
that the first (bracketed) term gives v = 0.370(«/TR), i.e. less than 40%, too large while the full expansion shown
gives v = 0.281(k/TR), i.e. less than 5%, too large. The agreement is remarkable. For smaller values of a/R it is, of
course, even better.
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46 R.J.DONNELLY AND P. H . ROBERTS

decreasing with increasing p and soon becomes less than the interatomic spacing. It would seem
that the probability of exciting a vortex ring of size much larger than the neutron wavelength
would be small. The coincidence shown at E in figure 1 appears to strengthen the idea that rotons
and vortex lines may belong to the same branch. No experimental evidence seems to be in conflict
with the idea at present, but we should emphasize that, even if the two branches are disjoint, our
calculations are still valid if | £ — 4] is small.

One further problem, of importance above 1K, should be mentioned here. Glaberson ef al.
(1968) have shown that the core of a vortex in He 11 likely contains normal fluid, perhaps a material
like He1. On changing the length of the vortex core, heat will have to flow from the bath into the
newly formed core, implying that there is, effectively, a latent heat associated with the creation
of more vortex core. This heat energy will add to the internal energy of a vortex, but since it
flows into and out of the core at constant pressure and temperature, it is not connected with
changes in energy by outside agents (such as forces which produce an impulse). In the usual way,
then, we can speak of a free energy whose changes coincide with the changes in the energy E we
have quoted for the hollow vortex. Thus the entropy associated with the core would not appear
to affect the regular dynamic behaviour of a vortex ring. It may, however, influence the nuclea-
tion process and we shall return to this possibility in § 3. In the context of the present discussion,
the energy for vortex rings, plotted as E in figure 1, is the free energy given by (2.2); and the
momentum p is the impulse given by (2.1). The group velocity is everywhere v = 0E/0p.

So far our discussion has been semi-classical, but it is worth noting here that the structure of
the circular vortex in a Bose condensate has recently been examined by Roberts & Grant (1971)
in the small ¢/R limit. They were able to show, in agreement with speculations by Donnelly &
Roberts (19694), that the energy of the ring coincided with (2.2) provided the 1.5 was replaced
by 1.62. It was also demonstrated rigorously that the Hamiltonian relation v = 0£/dp was obeyed
to the same accuracy.

It is important to keep in mind that any experimental determination of « is predicted on the
assumption of a particular core structure, and, if another core structure is found more con-
venient, the same dynamical properties can be secured by changing a appropriately.t In this
sense, our findings are not dependent on the choice of a core model. One more precaution should
be raised at this point. The theory assumes that the smallest rings (proto-rings) grow by diffusion
to a critical size. Since the barrier which is traversed may be as high as 80 £ 7, it takes the coopera-
tion of a large number of excitations to produce the initial fluctuation. The initial stages of growth
of a proto-ring must be complex indeed, and there is little chance that we could follow in detail
the evolution of a given roton into a ring. This classical uncertainty would appear to reflect the
quantum uncertainty which one would expect to find if a wavefunction description could be used
throughout. What is important in nucleation theory is the beginning and critical states: the
details in between are irrelevant. Our choice of a roton as the beginning state is, as we have
remarked above, largely a matter of presenting a definite model.

(0) The effect of superflow
The free energy surface in momentum space which concerns us is sketched in figure 2 ¢, showing
the roton minimum and the vortex ring branch joined together with no particular attention paid
to the details of the region near E in figure 1. The authors have shown (Donnelly & Roberts 1969 a)

1 'This is not, of course, true at higher levels of expansion in a/R, such as, for example, that shown in the footnote
on p. 45,
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NUCLEATION OF QUANTIZED VORTICES 47

that, for purposes of the escape over barriers, the principal points of interest are the lowest and
highest points on the energy surface.

When a steady superflow is applied to the spectrum of excitations shown in figure 2a, the energy
will shift according to a Galilean transformation. We adopt a frame of reference at rest with
respect to the normal component and accordingly the energy of a ring is

F=E+p.vg (2.5)
where we adopt the symbol F for the transformed free energy which is prevalent in the literature
on liquid helium. The group velocity of the ring relative to the normal fluid is v:

OF OE

= *a—ﬁ; = B’Ti“f‘vsi = Uy + Usi, - (2'6)

(41
where vy, is the self-induced velocity of the vortex line. The minimum value of # occurs at vy = 0
corresponding, of course, to the fact that the corresponding vortex rings are the rotons near A in
figure 25. The maximum in F, occurring near C in figure 26, defines the critical vortex which is also
stationary with respect to the normal fluid (v; = 0, v;; = —vs1) and represents a relatively large
vortex ring polarized against the superflow. The difference in energies between A and C is the
energy barrier AF. Its magnitude is the primary factor in determining the nucleation rate.

F
B

AF=F.-Fy

A A |

A o o o b

@ p ® D

FiGURE 2 (a). Section through the free energy surface in momentum space of a dispersion curve with a connected
ring branch. The roton ‘trough’is at A. () Section through the free energy surface in momentum space of
a dispersion curve with a connected ring branch, and in the presence of superflow of velocity given by the slope
of the straight line through the origin. The critical vortex is at the saddle point C. The free energy barrier for
formation of a critical vortex is AF.

The growth of a roton which passes from A to Cin figure 24 is the result of thermal fluctuations.
Beyond C, a vortex ring can grow in momentum, i.e. radius, and yet reduce its free energy F.
The energy to accomplish this growth must come either from the flow itself or from external
fields: we shall encounter examples of each case. The ring will continue to grow until it meets a
boundary, or until the frictional forces balance the driving force.

The rate of escape of rotons from A to C may be determined by the theory to be outlined in § 3.
This theory, as we have mentioned above, is essentially independent of the shape of the barrier
except near A and C. For this reason we make no effort to account for any structure in the
potential hill between A and C; we assume only that these points lie on a connected branch and
have no minima lower than A. The phonons, of course, have a minimum lower than A; pre-
sumably fluctuations over the barrier B (figure 1) adjust the relative populations of phonons and
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48 R.J.DONNELLY AND P. H ROBERTS

rotons to their equilibrium values, and in the presence of sound waves these phonon-roton con-
versions will contribute to the attenuation of sound. We shall consider this in more detail in § 8.

3. TuE LANGEVIN AND FOKKER-PLANCK EQUATIONS FOR RING PRODUGTION IN A
COUNTERFLOW ; CALCULATIONS OF THE PROBABILITY OF NUCLEATION

(a) The Langevin and Fokker—Planck equations

A vortex ring which serves as a scatterer for another quasi-particle will often suffer a change in
its momentum. Since the dimension R of a ring will (except for the smallest rings near A in
figure 2) be much greater than the wavelength of the quasi-particle, we expect that the change in
ring momentum resulting from the impact will be small compared with the total momentum p
of the ring. It is, therefore, permissible to use the formalism of Brownian motion theory to discuss
vortex rings (Chandrasekhar 1943). We divide the stochastic effects of collisions of rotons, and
indeed all quasi-particles, rotons, phonons and dissolved ®He atoms, into two parts: the systematic
‘dynamical friction’ created by the preferential direction of quasi-particle impact associated with
the ring’s persistent motion relative to the quasi-particle gas, and the remaining stochastic force,
Ai, which is random in direction. The drag force on a segment of vortex line is supposed to be
proportional to the length of line and to the drift velocity relative to the normal fluid. The
resulting Langevin equation may be written

dpy oF

di _A(P)'a—[;-i'i'Al(P:t)s (3°1>

where A(p) = 2mDR = 2(1—;;—8)2Dp% e (3.2)
say, and D is the drag coefficient per unit length of vortex line. The evaluation of £ will be
described in more detail in the appendix. The coefficient /A has the dimensions MT-! whereas /2
has the same dimensionality as D, namely, ML-1T-1,

Let At be a time so short that the change Ap in p during At is small. It is clear that Ap will be
composed of two parts, corresponding to a systematic deceleration A(p) (0F[0p;) At due to the
dynamical friction, and a diffusive part B(At), where

B(At) — f’ " Ap, 1) ds, (3.3)

is due to the random collisions. Since B is stochastic in origin it is not possible to evaluate it
explicitly; all that can be done is to obtain its probability distribution ¥(B). Even this is im-
practical unless we suppose that Af is large compared with the mean collision time of quasi-
particles with the ring. In this case B is composed of a large number of random forces which
means, therefore, that ¥ must be Gaussian and isotropic:

1 — B?
Y(B) = s 3.

where ¢(p) is a diffusion constant depending on the cross-section presented by the ring, in a way
which should be made clearer below. Since by (3.1) and (3.3) the net change Ap in p during the

interval Atis
Apr = — A(p) (OF[ops) At + Bi(Av), (3.5)
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NUCLEATION OF QUANTIZED VORTICES 49

we may obtain directly the probability #(p, Ap) that a vortex ring of momentum p should,
during the interval A, receive a change in momentum of Ap: it is

¥ (P, Ap) = ¥(Apr+ A(p) (OF[opy) At). (3.6)

The first two moments of this distribution are readily seen to be
(Ap1) = — A(OF|0py) At, (3.7)
(Api Apyy = 2q At dy;+ O(Ar)2 (3.8)

Now let w(p, t) dp be the probability per unit volume at time ¢ for the occurrence of a vortex
ring in the momentum range p to p +dp. Under the assumptions already made (e.g. that w does
not evolve significantly during one collision time) we have

w_ o [_<Apl>w+1<ApiAm>93]
of  opy At 2 At op

(3.9)
(see, for example, Chandrasekhar 1943, ch. 2, §4). From (3.7) and (3.8) this Fokker—Planck
equation is, in the present instance,

ow o[, oF ow
a=6ﬁ[ Sﬁuv+q%]' (3.10)
Thermodynamics tells us that (3.10) must possess the steady-state Maxwell-Boltzmann solution

w=wyexp (—FlkT), (3.11)

where w, is a normalization constant. On substituting (3.11) into (3.10), we can evaluate the
diffusion constant ¢(p), obtaining

q = AkT = p(p) pkT, (3.12)
showing that (3.10) may be written as
ow 0 ow woF
Fr [AkT(a[;;+ﬁ6[71)]. (3.13)

The Einstein equation (3.12) makes physical sense, for the magnitude of the force —Avin (3.1)
indicates that the cross-section presented by the vortex line to the directed collisions associated with
the dynamical friction is proportional to /. [Note that, according to (3.2), 4 is indeed propor-
tional to 21t R, the length of vortex line.] This suggests that the total number, N, of random collisions
occurring in the time At should be proportional to 4 and, of course, to 7. But, since the collisions
are random, the net increase they produce in Ap; should be proportional to the random walk, i.e.

(Ap1)r.m.s. oC N% oC (/lk T)% oC q‘%,
as indeed (3.8) implies.

(b) The role of neighbouring states

The derivation of the Fokker—Planck equation (3.9) has implicitly supposed that only circular
vortex rings of momentum p and energy F'need be considered, and w(p, t) dp has been defined as
the probability per unit volume of the occurrence of such a ring in the momentum range between
P and p + Ap. There are, however, a considerable number of neighbouring states which are as
effective in nucleation as the circular ring, namely the perturbed states in which a wave motion
of small amplitude is superimposed on its circular form. Indeed, one must expect that the random

Vol. 271. A,
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50 R.J.DONNELLY AND P. H. ROBERTS

collisions will continually excite such waves and that the circular ring is the exception rather than
the rule. It is also conceivable that the vortex may nucleate at a slow enough rate to acquire a
normal core (Glaberson et al. 1968). In that case the definition of a neighbouring state may well
have to be extended to include standing compressional waves about the normal core. Provided
the time scale for relaxation of these internal degrees of freedom is sufficiently short compared
with the nucleation time, this multiplicity is easily allowed for by assigning to the circular ring
of momentum p a statistical weight I'(p) and including all neighbouring states in the definition
of w. It follows that (3.11) must be replaced by

w=wyl'exp (—F|kT), (3.14)

which must, in a similar way, be a solution of the new Fokker—Planck equation for the w just
defined. It is plausible (and indeed correct, see Iordanskii 1965) that the modified form of (3.10)
will now read

w o[ OF 0 (w
% w45 7)) (19

. w0 ow  w OF
or, using (3.12) YT {AkT(%+ﬁ%)], (3.16)
where F=F-TS and S=kInI. (3.17)
If (3.14) is written in the form w = wyexp (— FJkT), (3.18)

it clearly satisfies (3.16).

The question about the validity of combining neighbouring states into the weight I" involves
consideration of time scales. The time scale of the vortex wave on a circular ring which is thermo-
dynamically importantis 7 = #/kT(~ 7 x 10~'?s at, say, 1.1 K). This corresponds to the period of
a vortex wave on the ring of wavelength (k7/41)%, approximately, or a few tenths of a nanometre
at 1 K. The time scale 7 should be compared with the mean time, 74, taken to create a critical ring
by collisions. Ignoring the momentum of the proto-ring compared with the momentum p of the
critical state, 74 is the time necessary to diffuse a ‘distance’ p. in momentum space, namely
£21q = p2/B(pe) kT. For a ring of radius 5nm at 1.1 K, we obtain 74 ~ 1.8 x 10-5s, which is indeed
large compared with 7.

Note that the presence of entropy modifies some of the conclusions of § 2. The critical fluctuation
is now one at which Fis stationary and since, in general, dS/0R will not vanish, this will occur at a
different momentum from that defined by (2.6). In fact, by (3.17) we replace (2.6) by
v1=g—[)€=g£-T%§+vsi=le—T%%+vsi, (3.19)
and the critical fluctuation, given by v; = 0, is characterized by vy; = T(3S/0p;) — vs;. This ring
has a velocity 7(0S5/0p;) with respect to the normal fluid.

One should note further that the appearance in (3.17) of the quantity #— TS introduces an
extra factor exp ($/k) in w, which reflects the density of states at the saddle point C of figure 2 (b)
at the moment of nucleation.

(¢) Analogies among stochastic equations

Before proceeding to make use of the Fokker—Planck equation for vortex rings, it is profitable
to understand the correspondences between quantities such as the diffusivity which enter the
equations in configuration space and in momentum space. In doing so we shall refer to the
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article by Chandrasekhar (1943) as C., and our earlier paper on ions, Donnelly & Roberts (1969a),
as D.R.

Chandrasekhar deals with the velocity @, but since impulse is more fundamental to us, we will
use p. The present probability distribution w(p, t) corresponds to Chandrasekhar’s distribution
W(u,t). The dynamical friction is defined in C. by saying that {Au;), an average over a period of
time short compared with that over which W(u, ) evolves, is — fuiAt. [The reader should not
confuse the dynamical friction recalled here for comparison with C. and D.R. with the diffusion
coefficient #(p) of the present paper.] We define the corresponding quantity by a similar average,
(Ap1)y = — A(OF[dp1) At. On the assumption that £ is constant, Chandrasekhar obtains

ow 9 kTOW

o = )|
a result which remains true if # = £(#;). The coefficient £7/m was determined by saying that
W = exp (—mu?/kT) must be a steady-state solution. By analogy we have equation (3.12) with
kT being fixed by similar considerations. From (3.13), the flux of rings per unit ‘area’ in momen-

tum space per unit time is OF

. w

Compare now with Smoluchowski’s equation [C., (312)]

ow_ o [1 (v, KTow
o omlp o m Oxi) |’

B

where Chandrasekhar’s K, a body force per unit mass, has been replaced by —VV. The inde-
pendent variables in (3.22) are coordinates in configuration space rather than in velocity space

(3.20)

(3.22)

(as in 3.20) or momentum space (as in 3.13). The associated flux is therefore [cf. D.R. (105)]

. 1foV  kTow
J1= -—zlia—xiw 7176)71] (3'23)
The relation between coefficient of diffusion D and f is given by [cf. D.R., (104)]
1 m
TRT D. (3.24)

The analogous identification is best seen by contrasting the last term of (3.13) or (3.21), namely
Ak T (0w[0py), with those of (3.22) or (8.23), namely (£ 7'/fm) dw/dx;. Clearly the correspondence is

1 D
A~ —=-—
pm kT (3.25)
or D~ AET.

Another point of comparison is in energy. In our earlier paper V is the potential per unit mass
whereas here F'is energy. The correspondence is

F~mV. (3.26)

(d) Calculation of the probability of nucleation

We turn now to the calculation of the probability of diffusion of a ring from A to Cin figure 26.
This can be done by applying a modified form of the theory developed earlier (D.R., § 4) for the
escape of Brownian particles over a potential barrier. The modifications required are of two kinds.

7-2
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52 R.J.DONNELLY AND P.H. ROBERTS

First, the case treated in D.R. was a two-dimensional barrier in physical space; here we are
considering escape over a three-dimensional barrier in momentum space. As we noted above, the
Smoluchowski equation applied in the former corresponds to a very similar Fokker-Planck
equation in the latter. Secondly, although our earlier work considers escape from a well in the
potential described as V(r), the roton minimum is not, at least for small v5, a well. If we recognize
that p is a vector and plot F(p) as ordinate in a four-dimensional space with the components of p
forming a three-dimensional ‘abscissa space’, we would have a trough near | p| = p,. If vs = 0, we

F= A+ (2p0)7 (0= 10)%

where y, is the effective mass of the roton, and the effect of superflow is to convert this to

F = A+ (2u0)7 (b~ o)~ Vs. D, (3.27)

where we take 6 = 0 to be in the direction of vs and cos § = vs.p/vs p. In carrying out the integra-
tions which follow we shall use spherical coordinates (p, 8, ¢) in p-space.

If vs > kT/p,, the fact that (3.27) is a trough is unimportant: it is ‘tipped up’ so much by v,
that at its lowest point the type of expansion used previously [cf. D.R., (116)], namely

simply have, near p,,

V ~ Jod 5%+ 153 2,

is valid and raises no difficulties. When vs < £7/p,, the curvature s, (say) becomes nearly zero
and the expansion mentioned would be an invalid representation of the minimum. We proceed
by considering general values of vspo/k T

According to (3.27) we express w near A in the form

w = /(21) wo exp {g(Fy— 4) — g*(2u0) ™ (0 — o) + &5 p cos b}, (3.28)

where g2 = 1/kT, and we choose a form for convenience of comparison with D.R., (130). The
number of rings, v, in the vicinity of the trough is obtained by integrating 6 right around the
trough from 6 = 0 to 6 = T (even though ¢ = 0 is clearly the lowest point), by integrating p to
0 in the usual way (since contributions where this is incorrect are exponentially small) and by
integrating over ¢. Thus

v = y(2m) wyexp {g2(Fo— )} [ [ [ exp (= g2(20) 4 (0= po)>+ g2vup cos 0} psin 0dp o s, 13.29)

which becomes, after integration over 6 and ¢,

v = (2t gty exp @(Fo= )} [ fexp{—g2(2u0)t (b= )2 +gt0up
—exp{—g%(2uo) 7t (p—po)® — gvsp}l pdp. (3.30)
PR o2( Lo £
NOW 2/"'0 (p pﬂ) +g vsl)-‘ 2/00 ﬁ2+‘52 /’60+vs p—2/‘0[’%
_‘gz 2 gz 9
. = %[ﬁ"f’o"ﬂo”s-l +m(2ﬂ'o[’o”s+ﬂ%”s)a
1.€.

|7 e SE 0=+t pap = expertpn + tmid)| [ e [FE 500 404 ol

= (po+ tovs) (21p20)% g~ exp {g2(pyvs + Fpov2)},
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NUCLEATION OF QUANTIZED VORTICES 53

where p’ = p—p, — s and the integral over p’ vanishes because the integrand is odd. Since
MyVs < p, for velocities much less than 2 x 10%cm/s, we can ignore that quantity when it appears.
Returning to (3.30), remarking that the second integral can be done by reversing the sign of vs,
we obtain

va = (2m)E wy exp {g%(Fo— 4)} pog ™ (21 T)E [exp (g%0spy) — exp ( — £20sy)]
= 8ryiduog 5 exp {g2(Fy— )} sinh (g%0spy), (3.31)
and we find for (3.28)

gVa gsp
Wy = P %pz CXp{ g ( A)} l:m] . (3.32)

The situation at the maximum C differs from that of our earlier paper by being in three dimen-
sions instead of two. The free energy can be written near C in suitable diagonal form as

F= FC - %w%}(pw _pCa;) 2+ %‘Y?)(py _p0y>2 + %t%) (pz '—pCz) 2> (3-33)
x being along 0 = 0, the direction of flow. '
Defining the flux as # to avoid confusion with the free energy F, we find that, instead of our

earlier result [D.R., (128)], F = (2m)} Dug(0ofsq), (3.34)
we have F = 2w Dg wy(we/sctc)- (3.35)

As far as our present application is concerned, we may replace /s by sq, and employing the
correspondence of (3.25) we have D ~ A/g% and

F = 2w A wog3(we/sE). (3.36)
The probability of nucleation comes from (3.32) and (3.36),

F A 10) g2vsp
P="n =0 (—9)[ 0 ] — (B — A)}. 3.37
va  4dmgubpd \s&/ |sinh (g%0sp,) exp { —g*(Fo—A4)} (3.37)

Note that whereas the curvatures w,, s,, etc. of our calculations on ions had the dimensions of

frequency, the curvatures in this paper have dimensions F#/p or (mass)~3.

It is interesting to compare (3.37) with the corresponding expression given by Iordanskii,
who made a calculation for thermal equilibrium without making the explicit assumption that the
smallest vortex rings are rotons. To cast (3.37) into a form similar to Iordanskii’s, we compute
the rate v = PN; of vortex rings created per unit volume per second from rotons. To be precise,
we may take N; to be the expression appropriate to a counterflow between normal and superfluid
of magnitude v; [see, for example, (7.10) below]:

3
N = (271-——————/23;) Fobo e—4kT sinh (1) °Ts> (3.38)
s
3 ]
We then have v=PN = (2m)? UZ:Q Ao e FokT, (3.39)

Tordanskii’s expression (3.13) coincides with our (3.19). His expression below (3.14) can be
compared with (3.39) by noting that (omitting entropy) s& = vs/p¢. For some reason not clear
to us there is a discrepancy of /2?2 between the two expressions.

It should be remarked that, if povs/kT is small, the energy barrier becomes, in our four-
dimensional space introduced above (3.27), a ‘rim’ which is at much the same height and
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54 R.J.DONNELLY AND P.H. ROBERTS

location for all |p|. The expansion (3.33) then becomes too crude for reliably estimating the
pre-exponential factor of (3.37). The correct result is

p = dove (@)2.:—“/”. (3.40)
2mrug \Po
It is interesting to note that this result can be obtained from (3.37) by setting
ot = V(2) b (3.41)

The p¢ on the right reflects the fact that the ‘width’ of the lip is here of the same order as the
perimeter of the rim. We use the result (3.40) in § 8.

On writing g, = 1/od we find that (3.40) differs from Kramer’s (1940) one-dimensional
result [Donnelly & Roberts 19694, (115)]
_ Agw, wg

P 21

eAFIRT (3.42)

only by the ‘geometrical factor’ (ps/p,) 2 which reflects the fact that in momentum space the rings
must diffuse through successive spherical shells of increasing radius .

In (3.42) we have recorded the one-dimensional escape probability which we have used in
§§ 6 and 7 below. In (3.37) and (3.40) we have set down two forms for the three-dimensional
escape probability which are basic to the theory of §§ 4 and 8 respectively. For completeness, we
record here the two-dimensional result [given by Donnelly & Roberts 19694, (133)] converted
to the present notation as described in § 3 (¢) above. It is

p = Ac@ass (“’—0) AT, (3.43)

21 Ser
We shall use this form in § 5.

Ficure 3. Superflow consisting of # quanta in a closed tube of radius R,
and mean radius of curvature R. (7, = nk/21R.)

4. SPONTANEOUS VORTEX PRODUCTION IN AN UNBOUNDED FLUID

Suppose we have a persistent current in a circular tube of the form shown in figure 3. If the
circulation contains z quanta, n > 1, then the average superfluid velocity will be given by

_ nK

Vg = ET['-R’ (4.1)

where R is the mean radius of the curved tube. The flow in this tube now has an associated de
Broglie wavelength of magnitude A = h/mis = /5. Thus nA = 2R, and there are # nodes in the
flow about the tube.

The flow of a persistent current is one of the most convincing demonstrations of the nature of
superfluidity. The presence of such a current can be demonstrated by either destroying the
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current by a pulse of heat (Clow & Reppy 1967) and observing the resulting change in the angular
momentum of the container, or by suspending the channel so that it forms a superfluid gyroscope,
in which case the current is detected in a non-destructive way by tilting the plane of rotation and
observing the resulting force of precession (Reppy 1965; Mehl & Zimmerman 1968).

Let us consider the flow of such a current at finite temperatures. At absolute zero a persistent
current would correspond to the flow of the entire fluid, i.e. j = pvs. As the temperature is raised,
phonons and rotons will appear which will be stationary with respect to the walls of the container,
owing to their viscosity. These excitations will, however, be polarized predominantly against the
superflow as suggested by the arguments of § 2. The magnitude of this opposing momentum per
unit volume may be calculated by a procedure similar to the standard calculation of the normal
density (see, for example, Donnelly 1967, p. 82) and has the value pn#s. Thus the net momentum
density is pis—pnls = ps¥s, and the angular momentum density of the circulation will be
L = psis R. Suppose a persistent current is prepared by rotating the entire apparatus above the
A-point, cooling to a temperature just below, and stopping rotation. If the angular momentum is
measured, it will have a certain value, say L(7"), dependent upon the details of the apparatus and
the procedure of the preparation of the persistent current. As the temperature is lowered quasi-
particles will disappear giving up their momenta to the container. This appears to the observer
as an increase in angular momentum of the superflow corresponding to the accompanying
increase in ps. This spectacular phenomenon has been experimentally demonstrated by Clow &
Reppy (1967), and the explanation suggested above was first given by Feynman (1955).

Now suppose one of the rotons, polarized in the manner suggested above, is expanded by means
of collisions to become a critical fluctuation and then expands further until it reaches the walls of
the tube. This action will change the phase of the associated de Broglie waves in the flow by 2.
This change in phase is illustrated in figure 1 of Langer & Fisher’s paper (1967). The change in
phase means, in turn, a decrease in circulation from z to (n— 1) quanta. If v such vortices are
nucleated per second per unit volume, then

dv k dn vV

Erity Friaary
If each roton in the volume ¥ of the tube is a potential vortex ring, then » = Ny P where N, is the
roton density at the temperature of the experiment. One can show that the decay represented by
(4.2) is very slow at long times. In most cases P decreases rapidly with v typically as exp ( — v,/vs)
where v, is a constant velocity. The rate of decrease of vs is therefore extremely small when v; is
small; indeed, if this were not true the phenomenon of superfluidity would not exist. To progress
further we must now calculate P using equation (3.37). This problem was considered first and
most thoroughly by Tordanskii (1965).

Suppose a roton at A in figure 24 begins to grow because of random collisions. The critical
fluctuation is given by 0F[0p; = 0, i.e. by 0 = 0 and R = R, where Ry satisfies 9F[0R = 0,
where by the considerations of § 2 we find

F = 3psk?R[In (8R/a) — §] — kTips R?vs, (4.3)
and this ring is at rest with respect to the walls of the tube. The second derivatives of F needed to
provide the factors wg and s of (3.37) yield

Vs 1 02F
w6 = “po 4TRpspe (51—{—2)0 (+:4)
2 = velpe (4.5)

(4.2)
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The probability, P, does not depend very sensitively on the precise evaluation of the pre-
exponential factors in (3.37), and in order to simplify (4.4) we may ignore the O(1) terms, after
differentiating (4.3) twice, in comparison with the remainder. Straightforward differentiation

then yields 0 = vs|2p = bt (4.6)
and we will use this estimate generally in what follows. The velocity (2.3) may be written as
K | ¢R
_ cR 4.7
% = IR In a’ (4.7)
with ¢ = 8/,e, or as x = InAx, (4.8)
4R, cK
= = 4.,
where x —> A yr— (4.9)
¢ \«k
For A < e, or vy > (:ﬁr—E)E’ (4.10)

(4.8) possesses no solutions, i.e. # has no well or barrier. This indication of spontaneous ring
production corresponds evidently to a rather large Landau condition on vs. For larger values of
A, x has a single maximum, x¢, and a single minimum, x,, given approximately for A - oo by

Yo =InA+InlnA+InlnlnA+..., (4.11)

xA=/1\+7\1—2‘+-2—%5+£—4-+.... (4.12)
(The latter series is asymptotic; the former should be terminated at the term less than e to obtain
an upper bound for ¥ and at an earlier term to provide a lower bound.) It is, of course, not
strictly correct to use expression (4.12) for the roton well, since (4.7) is really not applicable for
these small values of R. Indeed, any solution with Ax < ¢ [such as (4.12) implies for large A] is
meaningless since it implies that R, < «. Instead we will replace (4.3) by (3.27) in what follows,
implying a hypothetical connexion between the two in the manner already described in § 2.
Experiments on the decay of persistent currents use small v and large £ 7', hence we may regard
vspo/k T as small (typically 0.01) and replace the expression in square brackets in (3.37) by unity.
Using (3.37), (4.6), (4.9) and (4.11), and on discarding a InIn A term in AF, as the approximation
%g = In A to (4.11) demands, we find

P = fe-AFkT, (4.13)
i PBopsk®kT [ ( K )'a

where f= Gap (2 In Trosa) | (4.14)

N AF  psid ck \12 4

and T = T6nk o, [ln (41Tl)s(l)J T (4.15)

The appearance of a new critical velocity is evident in (4.15). The velocity
Vtn = psk3[16TkT (4.16)

might be termed the thermal characteristic velocity. Typical values are shown in table 1. It may be
noted that the high velocities shown there contain the essence of the difficulty of vortex nucleation.
Unless vs is comparable with iy, or effects omitted here such as density of neighbouring states are
significant, appreciable nucleation rates will not occur. Actually the estimate (4.15) for AF is
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pessimistic. A more precise solution of (4.8) (and continuing the use of 4.6) leads to the values
listed in table 2. These have been computed for the illustrative temperature of 2.1 K for para-
meters listed in the appendix. It will be observed that v is a very sensitive function of temperature
and that the critical value of v5, for which » = 1, say, is almost an order of magnitude too large to
agree with the experiments of Kukich et al. (1968) and Notarys (1969). It may be noted that the
values of fN; given are of the order of those estimated by Langer & Fisher (1967) and Fisher
(1968), and stated by them to be a characteristic atomic frequency. The analysis justgiven suggests,
however, that fN; should be extremely temperature dependent, and it provides a means of
estimating this dependence and also that created by pressure variations, ®He concentrations, etc.

TABLE 1. TYPICAL VALUES OF THE THERMAL CHARACTERISTIC VELOCITY

T/IK 1.1 1.7 2.0 2.1 2.14 2.16 2.17
Uy /ms—t 186 93.4 46.0 24.5 14.0 7.2 2.2

TABLE 2. NUMERICAL MAGNITUDES IN JORDANSKII’S THEORY OF NUCLEATION IN AN
UNBOUNDED FLUID; HERE 7" = 2.1 K AND ¢ = 0.128 nm

vfemst 200 300 387.7 400 500 600 700

Ry/nm 27.7 17.2 12.7 12.2 9.34 7.49 6.21
po/inm=t  8.24x 10t 3.18 x 10t 1.73 x 10 1.60 x 10t 9.39 x 103 6.04 x 103 4.15% 10°
AFkT 251 129 82.4 77.8 50.9 35.0 24.8

SN, jem=3s1 4,01 x 10% 1.26 x 106 6.04 x 107 5.52x 10% 2,89 x 10% 1.70 x 1035 1.08 x 10%
vjem=3s-1  2.90x 10~ 9.41x 1072  1.03 89.6 2.23 x 1013 1.07 x 1020 1.89 x 102
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We may now assess how the persistent current will decay with time, using (4.2) and the simple
form of the probability of nucleation summarized in (4.13) to (4.16).

If we write z = ck[4may,, (4.17)
and define 4 and B by .
_ ﬂ(}pSM‘ VkT E % 2)2 alk1 __/)usd
A= 2R ¢) \op,) ¢ B =rT (4.18)
we find dz/dt = Azi(Inz)2e-Banar, (4.19)
It is readily shown from this equation that, in the limit ¢ - o0,
In¢
2~ Blnlns® (4.20)
or, returning to the original variables,
2
vg ~ v LBILD® o, (4.21)

Int °’
It is interesting to observe that this result is completely independent of the form of the pre-
exponential factor f, and (4.14) could be modified almost at will (in respect of magnitude and
algebraic power of vs) without affecting (4.21).

A little consideration shows that the time required before the form (4.21) is attained is too large
to be physically relevant. When such slow decay processes are at work, the terms in Inzin (4.19)
scarcely change over the time during which the experiments are performed, and can be replaced
by average values. It is of some interest to notice that, in this case, the decay law has a universal
form. To see this, let 75 be a mean value of vs for the evaluation of the logarithmic terms, and
define a dimensionless superfluid velocity, y, and time, 7, by

cK 2
Vs = Uth [ln (m)] Y, (4.22)

8 Vol. 271, A.
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_fi 1 ___.__.CK )]—st
T—B%[n(cl'rrais

1 2 AT
_ 548 T (2_“) (kT)E e . (4.23)
PER  \mo) phid In ( K )
4:Tfa'i)-s
We then obtain dy/dr = —y~te 1. (4.24)
101
0.8
y
0.6)
04
0.2
0 | | 1L | ]
107 10° ot 7 107 10° 10*

FIcUrE 4. ‘Universal®’ decay curve for superflow in a closed channel. The curve is the solution of the differential
equation dy/dr = —y~% e~7, where the variables y and 7 are defined by (4.22) and (4.23).

The form of y(7) is shown in figure 4. We can show from (4.24) that, in place of (4.21), we have

Vth K 2
Us ~ [ln (4Tra175)] ,  (t—>o00). (4.25)

5. THE THERMAL VORTEX MILL

The characteristic velocities of table 2 are very much greater than those observed by Kukich
et al. (1968) and Notarys (1969). Indeed the latter author has observed that the radii of the critical
vortex rings implied by the small critical velocities of his experiments are greater than those of his
channels! It can hardly be correct, therefore, to model the process by a vortex ring in isolation
from solid walls. In the first examination of the effect of walls we study the properties of a vortex
mill of the same general type as that envisaged by Glaberson & Donnelly (1966) but with two
differences. First, the activation of the mill to the critical state is through thermal fluctuations
superimposed on a general superflow past the pinned vortex. Secondly, the vortex line is con-
sidered to be pinned on two projections on the opposite sides of the pores or channels in the
experiments, rather than on two projections close to each other on the walls. This means that
image effects are small and will be ignored. It follows that the estimates of P we will obtain are,
if anything, too small. We visualize the vortex line caught on two projections a distance / apart as
illustrated in figure 54, and we visualize it distorted by thermal fluctuations into the mean shape
of a circle which we paramatize by the angle 6 shown from the centre of curvature to the pro-
jection. The change in momentum (impulse) in reaching this state from the straight line state
(6 = 0) will be of order ps« times the area between the two, shown shaded in figure 5a. [A further
discussion of impulse applied to nucleation problems is given in § 6 (¢).] We therefore take

p = 1pskl®(6 cosec? § —cot 0). (5.1)
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In computing the energy, we use the idea of tension in a vortex, that is, that a vortex segment of
radius of curvature R has the same energy per unit length as a ring. (We shall encounter this
again in §7.) Thus from (2.2) the energy per unit length is psx?[In (8R/a) — §]/47 and for the
segment in figure 5a the corresponding energy may be written approximately as

E = (1/41) psk?6 cosec 01n (82%|a), (5.2)

where to overcome a difficulty concerning the form of the logarithmic term we have adopted a
cutoff of #, a mean radius of curvature, which we regard as a constant and have dropped the
constant — 3. [It could equally well be absorbed into the logarithm as in (4.7).] Since the
dominant effects are not contained in this term, some such approximation should be tolerable.
The expression for the free energy in a superflow now becomes

F= 117r pskIn (%?) 0 cosec 6 — }ps kl%5(6 cosec? 6 — cot 0). (5.3)

The equilibrium states are given by

oF _ o (5in 6 — 0 cos ) K 8Z\1 _
39 = skl 25in®0 [ S~ 9micosecd (_a—)] =0 (5:4)
NURTIRT K 8
which implies vs = mln (—a—) . (5.5)
5 T
6 l 6c
@ (&)

Ficure 5. Vortex line (heavy curve) attached to two projections. (a) Initial stage, flow is into the page, the change
in impulse from the state of zero flow is proportional to the shaded area. () The configuration of the line
corresponding to the well, 8,, and to the critical vortex, 0, = T—0,.

An expression of this form is, of course, expected from the Arms & Hama theory (1965). The two
roots are a minimum 6, (< %m) corresponding to the well, and a maximum 0y =mw-6,
corresponding to the critical fluctuation. These are illustrated in figure 5. The corresponding
values of F are Fy = 1psklPvs(0, cosec?0, +cotly), (5.6)
and Fo = }psklPvs[(r—0,) cosec?0, —cot b,], (5.7)

AF _Fy—F, _psklvg

so that TT="FT = 4T

[(Tr—26,) cosec?f, —2cotb,]. (5.8)

The computation of the pre-exponential factor f (cf. (4.14)) is quite complicated since, to
allow for the width of the well and the lip, we must consider cases in which the plane of the loop
in figure 54 is oblique to the plane normal to vs. These two degrees of freedom, corresponding to
tilting the loop, and increasing its radius, suggests that the escape calculation should be a two-
dimensional one. A tedious argument indicates that, at least for small 6, and (—6), (4.6) will

8-2
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60 R.J.DONNELLY AND P.H. ROBERTS

continue to apply, while both w} and s3 are given approximately by vs/p,. Using the result (3.43)
quoted above, we find that P is still given by (4.13), but with AF decided by (5.8) and with

fe Agvs  Povs[(m—0,) cosec? 6, +cotf, ]} (5.9)
T 2wy 2py Tl(2psk)} (0, cosec? O, —cotly) -

(see (3.2)). Here p, is given by (5.1) with 6, replacing 6. It is not obvious what value for % should
be adopted. Its effect on Plies mainly in its influence on the height of the barrier and this, in turn,
is influenced most by the value of Z for 6 = 0.. It is therefore natural to take Z to be the radius
of curvature when the ring is in the circular extended position denoted by 6 in figure 55, 1.e.

X = }lcosecl,, (5.10)

which is, of course, the same as when it is in its unextended position 8. Given (5.10), equation
(5.5) again takes the form

x = InAx, (4.8)
. 2 2
but with X = M, A= K , (5_] 1)
K TV a

in place of (4.9). Much of the discussion given below that equation holds true with obvious

amendments, e.g. if A < e, or 2\ x

vs > ('rr—e)a’ (5.12)
there are no equilibrium states, and the vortex nucleates spontaneously. Also, since cosec 0, > 1
for all 6,, only one branch of the solution of (4.8) is relevant, namely that which reduces to (4.11)
in the limit of large A. Even this branch fails to have meaningful solutions if Ax < 4//a, a condition
which implies spontaneous nucleation after the manner of Glaberson & Donnelly (1966).

The case A > 1 is comparatively simple. Then by (4.11) we have

K 2«
= e 5.1
cosec 8, 21rlvsln ('m)ga)’ (5.13)

and (5.1), (5.8), and (5.9) provide the necessary expressions for p, fand AF. The limits imposed by
(5.13) and the consideration that cosec, > 1 are shown in table 3 for a number of values of /.

TABLE 3. LIMITING VALUES OF [ AND ¢ IMPLIED BY EQUATION (5.13)

{/nm 1 5 10 50 100 500
v/ems™t 5366 1483 833 210 115 28

If lvg/k is small, so is 04, and the solution becomes even simpler. By (5.8)

AF Psk® 2k \?2
KT~ 161k Tos [m (Twsaﬂ ’ (5.14)
3o K> 2% \ 12 _
. 4 _

(cf. (4.14)). It is interesting to note that in this case, P is (apart from the pre-exponential factor
which affects Pinsensitively) independent of /, the length of line. It is also evident from (5.14) that
the characteristic velocity, vin, defined by (4.16), again plays a crucial role in determining AF,
and therefore P.
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To obtain a feeling for the numerical magnitudes, we again consider 7" = 2.1K and the
constants given in the appendix, and take / = 50 nm. The results are shown in table 4.

TABLE 4. RESULTS FOR A THERMALLY ACTIVATED PINNED VORTEX OF LENGTH
[ =50nmar T = 2.1 K.

vjems™t 50 100 150 190 200
0,/deg  11.3 25.3 427 62.8 70.6
AFIET 2420 634 166 25.6 8.84
4 Sist 2.86 x 107 1.04x 10° 4.93 x 108 2.50 x 108 1.96 x 108
[ J‘ Pls1 1.0 x 101041 4.0 x 10—267 3.5x 104 2.0x 10-3 2.8 x 104

A
,/,\

Itis not entirely straightforward to deduce the rate of vortex production from these values of P.
For example, we do not know what value should be adopted for the density of pinned vortices
per unit area of container. Also it is not obvious whether a single line stretched across the tube
would be a perpetual source of vorticity (a ‘mill’) such as Glaberson & Donnelly suggested, or
would nucleate a vortex ring only once. Another difficulty lies in the fact that, as the vortex passes
from the 0, to the 0 positions of figure 55, it will tend to move with respect to the normal fluid
cither by sliding in fofo along the walls or, if its ends are firmly rooted on projections on the walls,
it must distort considerably and ‘pay out’ line as it does so. Itis difficult to examine these matters
quantitatively.

THE ROYAL A
SOCIETY

If the projections shown in figure 54 do not lie at opposite sides of the channel, but lie close
together on one side of the channel, image effects cannot be ignored. They are discussed more
fully in § 6 below. We merely comment here that although image effects appear to increase the
energy barrier to be overcome, they do not seem to make P substantially larger. But it is already
clear from tables 3 and 4 that fluctuations appear to be an important source of rings at a velocity
only 10%, below that at which the Glaberson-Donnelly mechanism is effective (vs = 210cm/s,
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from table 3). We therefore continue our search for a more eflicient source of vorticity.

6. NUCLEATION IN A FINITE CHANNEL
(a) The temperature of the onset of superflow

We now consider the effect of a wall on the spontaneous nucleation process of Iordanskii
described in § 4 above. Although experiments are often carried out in highly irregular channels
such as compacted rouge or Vycor glass, or in nearly two-dimensional situations such as an

unsaturated film, we shall suppose the fluid is confined to a circular tube of radius R,, and is at
rest. We imagine a ring to nucleate, from a roton at the centre of the tube polarized along its axis,
to a circular ring whose plane is perpendicular to the axis of the tube on which it is centred. This
model is common to studies of the Feynman critical velocity mechanism by Fineman & Chase
(1963) and Gopal (1963). Although we will follow the analysis of the latter author assuming, as he
did, that the rings are classical ‘solid core’ rings, when their radius, R, is large compared with their
cross-sectional radius, a, our conclusions are not sensitive to core structure. Following the
philosophy of § 2, that the roton and vortex branches are part of the same dispersion curve, we

NI
O H
~ =
kO
= O
=w

imagine that, for R < a, the spectrum has a roton well. Also, by analogy, for R 2 R,—a, the
quantum pressure effects associated with healing at the wall and the image of the ring will produce
an analogous minimum which we will call ‘the image well’. Following Gopal, we assume this
occurs at Ry = R, — a, and evaluate the energy, E;, and momentum, py, of that state accordingly.
Since we expect quantum pressure effects for the core near a wall to be similar to those producing
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62 R.J.DONNELLY AND P. H. ROBERTS

the roton minimum, we will take the curvature 32£/0p? to be the same as that in the roton well,
namely, zg. These considerations lead to the curve sketched in figure 6. While the arguments
given here apply strictly only to the evolution of a ring from the axis of the tube, we apply the
theory as if every available roton were a candidate for nucleation. One suspects, in any case, that
this represents the lowest energy situation, and that a ring growing to finite dimensions under
a fluctuating force might well centre itself in the potential well denoted by AEy in figure 6.

E C §
I T s T
|
l
I
[
.8 AER AEI '
e | image
@ well
E I
/
e ] 1 Er
| |
roton 1
WT\H | :
1
' Ai*—- classical theory——ol————v ! /
wA ¢ J— — ___L I N R
0O =za Re R

TF1cUre 6. Schematic diagram of the dependence of the energy of a vortex ring, centred on the axis of a tube, as a
function of the radius R of the ring. The curve is also, parametrically, a dispersion curve since poc R2, The
region in which classical theory is applied is indicated, and the roton and image wells are greatly exaggerated
for clarity.

It might be argued that the probability of a ring in the image well making a quantum transition
into the wall may be large. It is difficult to see how such a relatively macroscopic wavefunction
could suddenly and coherently make such a transition, and we are not aware of any estimates
having been made of the relevant matrix elements. It is, however, important to point out that,
even if the matrix elements are large and hence our estimates of vortex line density on the wall
are too high, many of our arguments [particularly our estimates of Ty (R,) and Ty(R,, vs) below]
will still apply, since they depend, in no essential way, on the vortices at the wall.

In the absence of superflow, E is, in an unbounded fluid, a monotonically increasing function
of R, and there is no possibility of creating a permanent ring of large radius (although there will
statistically always be some present in the Maxwell tail). The situation in a tube, as may be seen
from figure 6, is crucially different. The confinement of the vortex flow to the tube depresses £
at large R, and creates a single maximum between the roton and image wells, and nucleation can
occur in either direction over this barrier. By ‘nucleation outwards’, we will mean the nucleation
of vortex rings in the image well from rotons in the interior, by ‘nucleation inwards’, we will
mean the reverse process of the collapse of rings from the well into rotons in the interior. In
either process, the probability of nucleation is independent of the sense of circulation. Once,
however, a nucleation has taken place, a flow is created in the tube and this, as we shall see in the
following section, enhances the probability that a nucleation of the opposite sense will take place
subsequently. The mechanism is, then, self-correcting and maintains, on the average, the
original state of superfluid at rest. The time scale, 7, of this process is, for nucleation outwards, of
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order 1/vV where V is the volume of helium in the apparatus and v is the rate parameter, PNy, of
the type introduced in §4. For nucleation inwards, it is of order 1/vS, where S is the surface area
of the tube, vs is a rate parameter py Sy which will be discussed presently, and Sy is the density of
vortex line on the walls. The image well could be populated initially by a vigorous stirring of the
fluid—for example making it flow at speeds beyond the critical velocity. Itis intuitively clear (and
indeed it will be demonstrated in the next section) that in the presence of a superflow the rate of
production of vortices by either of these processes adjusts itself in such a way as to always reduce
the superflow. The nucleation rate tending to destroy the superflow will be increased beyond the
value 1/7 obtained above, while that of the reversed sense will be decreased. We may infer that if
7 is ‘sufficiently small’, say 1sec, the phenomenon of superflow will be greatly inhibited. This is
the well known ‘suppression of the A-point’. We now set about the task of evaluating it as a
function of Ryand T.

TABLE 5
Ry/nm X Eofkp, Eyfkp, 10-%0ep}

1.0 0.733 379 298 204

1.2 0.742 513 366 158

1.6 0.754 809 503 106

2.0 0.763 1130 640 78.1

2.4 0.770 1480 776 60.6

3.0 0.777 2040 981 44.4

4.0 0.787 3050 1320 29.8

5.0 0.794 4130 1660 21.8

7.0 0.803 6470 2340 13.6
10.0 0.813 10300 33170 8.25
15.0 0.822 17 300 5080 4.67
20.0 0.829 24800 6740 3.11
30.0 0.837 40800 10200 1.76
40.0 0.842 58 000 13600 1.17
50.0 0.846 75900 17000 0.855

In an unbounded fluid, the momentum, p, of a ring of radius R coincides with the classical
hydrodynamic expression pskmR? for its impulse. In a bounded fluid, the correct choice of
impulse leaves room for argument (Vinen 1966; Gopal 1963; Huggins 1966; Kawatra & Pathria
1966). There seems to be no compelling reason, for example, why — psxm(R2 — R2) should not be
as appropriate a definition of p as pskTR?; indeed, when nucleation occurs from the walls, Vinen
(1966) has argued that the former definition may be physically more plausible. Although these
questions must be faced whenever the absolute magnitude of the free energy is thought to have
significance, they appear to be of no moment here. For, when computing the probability of
escape over a barrier such as that indicated in figure 6, we require only the free energy difference
between A and C and the corresponding curvatures. This requires a knowledge of only the
momentum difference of these states, and the constant difference ps«mR3 in the two definitions
of p just given plays no part. This conclusion remains true when there is plug flow of superfluid
down the tube, which will be considered in the next section. We may therefore adopt the classical
expression for p given in equation (2.1). The free energy, F, is the kinetic energy of superflow of
the vortex, and can, in the classical range, be obtained from Gopal’s analysis. Gopal presents two
forms of solution, one (the inner) is valid for small x = R/R,; the other (the outer) for small 1 —x.
There is a common range of x in which the expansions agree well with each other. Its location
depends in detail on the value of Ry/a. In what follows we have used the inner and outer forms of
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the solution as appropriate. For the value of £}, the energy of the image well, we have taken
Gopal’s estimate B, = Lps®Ry(In2+1), (6.1)
where R; = R,— a as shown in figure 6. It is clear that, since £} > 4, the energy difference AE;
between the image well and the critical fluctuation is much less than AEg, the energy difference
between roton well and critical fluctuation. It follows that the probability of nucleation inwards
greatly exceeds that of nucleation outwards and that, in statistical equilibrium, the population
at the E; energy level is correspondingly less than M, the roton density at the energy level 4.

Table 5 displays values of E, the energy maximum, its location xy = Rg/R,, its curvature g,
and E; as functions of R, (£ is the Boltzmann constant and « is taken to be 0.128 nm). ¥

In evaluating the probability P we will adopt the simple one-dimensional theory of Kramers
(cf. Chandrasekhar 1943). This is not strictly accurate since we should consider states adjacent to
the lip. These states refer to vortices (no longer quite plane-circular) slightly off-centrc and
slightly oblique to the tube section. The investigation of these neighbouring states would be an
intricate matter and would result only in corrections to the pre-exponential factor f. Such cor-
rections influence P but slightly and there seems no justification for undertaking such an elaborate
analysis for such a small refinement in P. We therefore take (3.42):

Aaw, g
_ de®y o,

P
f 27

xp (= AER[kT). (6.2)

We can now use (6.2) to evaluate Ty, the temperature of the depressed A-point. We define this
temperature by saying that it is that temperature at which, on the average, one vortex per unit
volume per second is fluctuating over the barricr at G, i.e. 77! = v = N; P = 1. We have ignored
inward nucleations in this definition, but it is easily shown that, were they added, the change in
the estimate of 7 would be negligible.

One should note carefully that 7j is not, strictly speaking, a depression of the A-point in the
sense that the superfluid is destroyed. Indeed one assumes the superfluid, and the quasi-particles,
have the same properties as are appropriate to this temperature, but that the fluctuations of rings
over barrier C in figure 6 would cause rapid decay of any attempted superflow in the range
T, < T < T,. Moreover, oscillatory flow such as that accompanying third or fourth sound will
disappear at only a slightly higher temperature. To see this, note that at 2.14 K the value of R,
associated with v = 11is 8.34 nm, while that associated with v = 103is 7.79 nm. Thus temperatures
only slightly above T correspond to rapidly increasing values of v. It is likely that fourth sound of
frequency f, for example, will become strongly damped at a temperature such that f ~ v. Thus 7
should increase slightly with increasing frequency, but the change is so small it may well be
beyond experimental resolution. Evidence that direct flow and fourth sound are extinguished at
nearly the same temperature is presented in figure 7. The data in this figure, given by Guyon &

t It may be noted that, in one minor respect, we have departed {rom Gopal’s analysis. The critical fluctuation
is one in which the vortex is at rest with respect to the tube, i.e. is such that »; = 0F/0p is zero. Indeed, Roberts &
Donnelly (1970a) have noted that the expression for the velocity of the classical circular vortex ring with solid core
can be obtained in this way, provided explicit recognition is made of the conservation of vorticity in a ring during the
differentiation with respect to p. This requires that a is considered to be a function of R and that Rda/adR = —}.
It may be objected that, if the same procedure of differentiating Gopal’s expression (2.14) for image cnergy is
adopted, the contribution (2.15) to the ring velocity is not recovered. It appears, however, that there is a small
discrepancy in Gopal’s method of obtaining the ring velocity: his statement below (2.14) is not strictly correct in the
order to which he is working. Thus we retain our result y, = 0F/dp; in the present analysis and, in locating the
maximum of F in this and the following sections, we allow @ to vary in the manner just indicated. It should be
observed that the dominant terms are unaffected by the considerations of this footnote.
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Rudnick (1968), represent experiments on the same packed powder sample (Carbolac II). The
results of direct flow measurements are indicated by the solid line and the amplitude of a low
frequency (f ~ 100 Hz) component in the fourth sound resonator is shown by the dashed line.

=

L .1 1 \ 1
2.15 2.16 7/K 217

F1cure 7. Flow rate (solid line) and low-frequency resonance amplitude in a fourth sound cavity (dashed line)
as a function of temperature. Both disappear near 2.167K (after Guyon & Rudnick 1969)

100]

T T T TTTTIT
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toaa il roao el L]

1 10 100 1000
103( Ty — To)/K

Ficure 8. Calculation of the temperature of onset of superflow, T, as a function of d = 2R,, from the condition
v = 1s~'and ¢ = 0.128 nm. The experimental onset temperatures indicated by rectangles and one circle were
obtained by Guyon & Rudnick (1969). The squares indicate unsaturated film measurements by Fokkens et al.
(1966).

Accepting the definition of 7; by v = 1, and adopting a = 0.128 nm for the core radius, we
find the results shown by the solid line in figure 8, where we have taken d = 2R,. The experimental
data, assembled by Guyon & Rudnick (1968), refer to their fourth sound measurements, and the
unsaturated film experiments of Fokkens, Taconis & de Bruyn Ouboter (1966). With the reserva-
tion mentioned in § 1 that a is a function of temperature, the onset curve in figure 8 is in gratifying
agreement with experiments. The fluctuation model for the onset temperature developed here
(which as we have remarked, is independent of the concept of inward nucleation) offers an
alternative to the Ginsburg-Pitaevskii approach discussed by Guyon & Rudnick (1968).

We now estimate the surface density of vortex line Sy (dimensions cm~?) on the wall in thermal

9 Vol. 271. A,
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66 R.J.DONNELLY AND P. H ROBERTS

equilibrium. In the present model, Sy is also the number of circular vortex rings per unit length
of tube. These will nucleate inwards at the rate

Sy Agwp 0 (2)Lexp (—AE(kT).
If we regard all rotons in the tube as capable of nucleation outwards, the reverse process proceeds

at the rate NeTRE A0, 0o(21)texp (— AER[KT).

105\

10"10 -

T N N N N W I RN NN I Lol
1 10 100 1000

103(Ty — T)/K

Ficure 9. Relationship between Sy and T given by equation (6.4). The curve was derived by computing T},
for a given Ry, then computing Sy using the T}, and R, so obtained.

(It will be recalled that we assumed that the curvatures of roton and image wells are the same,
namely w,). Thus in thermal equilibrium, where the two rates balance, we have

Sy = TR Nrexp (= (Ey—4)/kT), (6.3)
or, using the theoretical expression for N [cf. equations (A 2) and (A 3) below],
; kT\% (poRy)? .
Sy = (%'1?) (-’L"b?@)— exp (— EfJkT). (6.4)

Figure 9 displays the vortex ring density Sy at the onset temperature 7; appropriate to a given
tube diameter R,. This was done by first computing 7 for a given R,, then computing Sy from
equation (6.4) using the 7 and R, so obtained. This balance does not take into account the
possibility that the vortex may be annihilated on the wall, as discussed at the beginning of this
section. The physical pictures which emerge appear sufficiently close to laboratory experience
that we are encouraged to believe that finite amounts of vortex line may actually exist on
boundaries.

Whether, in fact, the wall possesses the above equilibrium population of vortex line probably
depends very much on the way the fluid is prepared. If helium 11 were condensed directly from the
vapour, it is probable that Sy would be much smaller than the value suggested by (6.4) and might
even be zero. The rate 7-! at which the population would grow is fantastically small because of the
height of the barrier compared with £7. If, on the other hand, the fluid is set into supercritical
motion after it is cooled, it may well acquire a population of this magnitude and, moreover,
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NUCLEATION OF QUANTIZED VORTICES 67

because of the height of the barrier compared with £ T, there is little subsequent exchange between
rotons in the fluid and rings in the well. It would now be correct to regard these rings as being
trapped by their own images. Note that 0E/0R = 0 at the bottom, Ry, of the ring well, and that
rings trapped there will have, on the average, no motion along the tube although thermal
agitation will produce drifts back and forth from time to time. Finally it should be admitted that
the procedure described for fixing the well at Ry is somewhat arbitrary. More careful considera-
tions may well call for a revision of the magnitudes of £; and the curvature there in the future.

Experimentally, the specific heat at the depressed A-point shows a maximum reminiscent of
that which gives the true A-point its name, but more diffuse. The question we may now ask is
whether the existing theory can explain the specific heat anomaly. The creation of each vortex
ring on the wall from the main body of the fluid by outward nucleation requires the random
energy of the fluid to be converted into the ordered energy of hydrodynamical motion. When
considered as one of a population on the walls, each of which is partnered by a vortex ring of
opposite circulation, the ordered energy of motion becomes less significant. (Consider, for
example, the fact that the hydrodynamical energy per unit length of a line vortex is of order
psk?In (L[a), where £ is a large distance cutoff, whereas that for a pair of such vortices of
opposite circulation separated by a distance 24 is at most of order ps«% In any case, a uniform
distribution of vortices of each type over the wall will not create hydrodynamic flow inside.)
There remains, however, the fact that entropy flows into a vortex core either from the fluid which
gave it birth, or from the walls, if they are conducting. The entropy associated with a vortex line
is influenced by several factors which are not yet completely understood. The most important
contribution at relatively high temperatures is probably the entropy of the normal core
(Glaberson ef al. 1968). In evaluating this we liken the interior of the core to an He 1-like material
and compute the entropy excess of this over the entropy of the same volume of He 1. In this way
we obtain the estimate

S = [s 105 T— kNr(z kAT)]-rrRz erg K-1cm-1 (6.5)

for the entropy per unit length of vortex line. The constant 8 x 108 is chosen so that the excess falls
to zero at 7, and to agree with the entropy of He1 ignoring the A-anomaly. The radius of the
normal core, R, is given approximately by

082
V(G=T)7

according to the analysis of Glaberson et al. (1968). The entropy of the array of vortices on the
walls of the tube is now seen to be 2R Sy §; per unit length of tube or 25y $;/R, per unit volume
of contained fluid. Thus the specific heat per unit volume is

2
G= T3 (32) -l r L[ (L) e-marrs]. (0

Re (6.6)

The heat capacity given by (6.7) gives an excess which must be added to the heat capacity of
the rotons and phonons. Presumably the normal A-anomaly may be suppressed in narrow
channels. Since the vortex cores are not present above 7, the excess determined here vanishes
at 7). Further information on the latent heat of vortices is needed to see how well (6.7) or a
similar expression agrees with experiment.


http://rsta.royalsocietypublishing.org/

A

£ A \\

a
N
L

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L%

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

68 R.J.DONNELLY AND P. H. ROBERTS
(8) The effect of superflow

We now extend the theory of § 6 (a) to the case in which the normal fluid in the tube is at rest
and the superfluid is moving everywhere with the uniform velocity vs (> 0) down the tube (plug
flow). The difference, F(R), between the free energy of this state and one in which superimposed
on it there is a vortex of radius R coaxial with the tube, is related to E(R) the expression for vg = 0,
by (2.5), which may be written in one dimension as

F(R) = E(R) +vsp(R), (6.8)

where we put p(R) = ps«mwR?, as before. For k < 0, the last term of (6.8) is negative so that
F(R) < E(R), the probability of outward nucleation is therefore increased (relative to its value
for vs = 0). Since, however, |p(R)|/E(R) increases monotonically with R, the probability of
inward nucleation is decreased. Conversely, for « > 0, these conclusions are reversed: outward
nucleation becomes less probable. We have, therefore, four different rates of fluctuation, inward
and outward nucleation for rings of positive and negative circulation. The dominant processes,
the outward nucleation of rings of negative « and the inward nucleation of rings of positive , act
in a sense to destroy the flow vs, which will, ultimately, cease unless an agency acts to maintain it
(i.e. a source of thermodynamic potential). If, on the other hand, the flow is maintained, a
statistical balance will be struck in which the number, Sy, of vortex rings per unit length of tube
having negative circulation exceeds that, S¢, of rings of positive circulation. Hydrodynamically,
the population of vortices on the wall now resembles a vortex sheet of strength & = «(S¢ —S5).
It is, strictly, not consistent to suppose, as we have done, that vs is uniform throughout the tube,
for there must be a discontinuity of & cm/s across the image wells. (The effect of this different
superfluid velocity in the healing region between image vortices and the wall does not, however,
appear to be particularly significant.)

If we compare the present nucleation process with that for an infinite fluid (§4), we see that
the energy barrier implied by (6.8) is always lower for outward nucleation of rings of negative
than it is at the same v in the Iordanskii process. The barrier is therefore overcome with greater
frequency. Nevertheless, if vg is large compared with the Feynman velocity, /4R, the critical
ring size Rq(vs) is small compared with R, and, since image effects are negligible, it is asymptoti-
cally the same as the theory in § 4 would predict. The same is true for the values of v and P. If|
however, vy is small compared with «/4TR,, the critical ring size, R (vs), lies close to Ro(0) the
maximum of E(R) on the Gopal theory propounded in § 6 (4). The energy and ring diameter of
the critical fluctuation are now considerably less than that arising in the Tordanskii process at
the same vg. This fact is illustrated in figure 10 which shows, for the two values of 0 and 700 cm/s
for vs, the flow V;(R,) which would be required on the Iordanskii theory to give the same energy
barrier. [The corresponding ring size Ry(R,) always exceeds R (vs) and may well exceed R,, as
Notarys (1969) has observed.] If crude estimates of the energy barrier are required, one can, in
this case of small Ry(vs), ignore the displacement of Rq(vs) from the value Ry(0) of the Gopal
theory, and evaluate (6.8) from the E displayed in table 5. As before, interesting nucleation
rates occur when E¢/k T, is about 80. We may further, in extension of our definition of an onset
temperature for superfluidity, define a 7j, which is now a function of vs as well as R, to be
that temperature at which » = 1. Figure 11 illustrates this generalization with d = 2R, and
a = 0.128 nm. The curve for vs = 0 coincides with that of figure 8. The curves for vs = 350 and
700 cm/s asymptotically agree with the Iordanskii theory, and in this region of relatively large
channels it is correct to speak of an ‘instrinsic’ critical velocity, i.e. one independent of channel
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NUCLEATION OF QUANTIZED VORTICES 69

size. Channel sizes smaller than ca. 80 nm begin to show definite effects of boundaries. Since the
pores of most gyroscope experiments are very small, they are almost always operating under
conditions where boundaries are important and where, in consequence, the concept of an
‘intrinsic’ critical velocity has no meaning. For fixed channel size T; tends to zero as vs becomes
infinite.

2000
'-I:I)
g Vs=700 cm/s
Q
N 1000F
| L
0 5 10

Ry/nm

Ficure 10. The flow, V;, which would be required on the Iordanskii theory to give the same energy barrier as we
find for a finite channel of radius R, with flows of 0 and 700 cm/s. The profound effect of finite channel size is
readily appreciated.

100k V50 Vi=350cm/s 700

1 Illlll!‘ ) llllllll 1 llllllll

1 10 100 1000

103(T, — Ty)/K

Ficure 11. Generalized onset temperatures for v, = 0, 350 and 700 cm/s as a function of channel size. The whole
family of curves T (Ry, v,) may be thought of as a map of critical velocities. Note that only at the largest values
of d do we begin to find T, independent of d, i.e. the ‘intrinsic’ or Iordanskii limit.

Turning our attention to inward nucleation of rings of positive «, we find that the energy barrier
for this process does not decrease as rapidly with vs as the outward nucleation of negative « rings
just described. This is illustrated in table 6. Although the results shown there are clearly
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70 R.J.DONNELLY AND P.H. ROBERTS

dependent on our assumptions concerning E;, they indicate that, apart from very small tubes,
or temperatures very close to 7, inward nucleation will not be as potent a means of reducing
superflow as outward nucleation, unless the population of vortices of positive « on the walls is,
for some reason, abnormally high. (We should observe that 4 has not been subtracted from the
energies for outward nucleation shown in the table.)

TABLE 6. EFFECT OF SUPERFLOW ON THE ENERGY BARRIERS
FOR INWARD AND OUTWARD NUCLEATION

v, =0 v, = 700 cm/s
4 A N e - )
Elkp, Elkp, Elkp, Elkp,
Ry/nm outward inward outward inward

1 379 80.8 2908 48.9
2 1130 494 791 335
3 2040 1060 1260 698
4 3050 1730 1670 1190
5 4130 2470 2020 1610
6 5280 3270 2300 2050
7 6470 4130 2520 2490
8 7710 5020 2690 2930
9 8990 5960 2820 3380
10 10300 6930 2910 3840

Let us now consider the process of ‘cooling through the onset temperature 7;’. While T
exceeds 7, the processes of creation and destruction of vortices occurs so rapidly that the fluid
can adjust continuously to the changing temperature. As T approaches 7, the relaxation process
becomes slower, and, at temperatures only slightly below 7, v becomes so small that further
cooling is adiabatic (no matter how slowly it is carried out on the laboratory time scale), and the
populations of vortices on the walls are now ‘frozen’ to their values at T, as roughly estimated
by (6.4). While we have already explained in § 6 (a) that there is a very effective mechanism to
ensure that, on cooling liquid helium at rest, we shall obtain equal values of Sy and Sy, non-
cquilibrium conditions in cooling, or statistical fluctuations in these populations may well lead to
asituation where 7 has been passed leaving one sign of vortex predominant. Under these circum-
stances a test would reveal a spontaneous persistent current, as indeed Mehl & Zimmermann
(1968, p. 226) have reported. If the apparatus has been cooled through 7j with S§ = S5, rotation
will fail to alter the population unless one rotates so rapidly as to reach the Ty(R,, vs) belonging to
the channel size and temperature in question. Then the populations can adjust, and on stopping
rotation a persistent current will be seen of the same magnitude as would have been observed by
cooling down rotating with velocity vs. This point resolves a question raised by Mehl & Zimmer-
mann (1968, p. 228), who noted experimentally the coincidence in magnitude of persistent
currents prepared by the two methods described here.

Now suppose one prepares a persistent current by cooling through the onset temperature
T,(R,, vs) corresponding to the rate of rotation of the apparatus and stops, leaving a persistent
current of magnitude vs. If one now raises the temperature of the apparatus to some temperature
T > To(R,, vs), fluctuations will cause a decay of the persistent current, which is rapid at first,
but becomes slower as the critical value of vs corresponding to that temperature is reached and
passed. This decay has been observed experimentally by Kukich et al. (1968) under the general
conditions described. As one would expect, the rate of decay reported by them is greater the
higher the temperature. '
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‘While the qualitative effects described here have been successful, the quantitative agreement is
not satisfactory. Comparison with the velocity data of Mehl & Zimmermann (1968), and Kukich
et al. (1968) shows that the calculated critical velocities are still higher than those observed
experimentally. Corrections to the value of a, entropy considerations and density of states
arguments can close this gap. For example, if the temperature is so high that a is comparable
with R, the wavefunction for the superfluid will be unable to reach its equilibrium value, and the
average superfluid density will be reduced to a value below ps. The lowering of the energy
barrier will reduce the critical velocity. We leave further discussion until these considerations can
be made more quantitative.

7. NUCLEATION OF QUANTIZED VORTEX RINGS BY IONS
(a) The nucleation problem

The mechanism by which an ion produces and becomes bound to a quantized vortex ring is
interesting for a number of reasons. First, the ion is so small that it produces almost no macro-
scopic disturbance of the liquid: the flow about the ion may be taken to be laminar (the Reynolds
number is of order one or less). Secondly, the situation is reminiscent of the famous problem of
the drag on a moving sphere in hydrodynamics. The notions of the boundary layer and its
separation from the sphere were developed over a period of years as an explanation both of the
shape of the drag curve and for the ‘drag crisis’. In this chapter we shall endeavour to account
for the shape of the drag curve for ions in helium 11 and the subsequent growth of a ring. Indeed
the nucleation of a quantized vortex ring from an ion is the quantum analogue of the drag crisis,
for not only does the drag on an ion-ring complex differ markedly from the drag on an ion, but the
entire dynamics of the complex is different also. '

Early speculations on this problem have been advanced by Huang & Olinto (1965). More
recently, however, experiments by Rayfield (1967) have led him to make a suggestion in sharp
variance with the discussions of Huang and Olinto, namely that the vortex ring is somehow
‘peeled’ from the ion in such a way that it is not necessary for the vortex ring to capture the ion
in a discontinuous manner.

One might at first try to enlarge on Rayfield’s idea by supposing that the ion is slowed down at
the moment of nucleation and that the vortex ring is formed by the impulse imparted to the
surrounding liquid by this braking action, the necessary energy coming fram the accompanying
decrease in kinetic energy of the ion. For simplicity suppose the ion is idealized as a point with
mass my. If the velocity of the ion initially is v;, and after nucleation vy, then the statement that the
momentum lost to the ion is converted to.the impulse of the ring reads

mi(vi—v1) = pskTR2, (7.1)
The change in kinetic energy of the ion may appear as energy of the ring when
my (v} —vE) = Lpsk*RL, (7.2)
where L = (In (8R/a) — $). Dividing (7.2) by (7.1) we obtain
vi+vr > kL[TR. ' ' (7.3)

Ifwe require that the ion move at the self-induced velocity of the ring at the moment of nucleation,

then P

i (7.4)

v = ﬁe[ln (8Ra) —}] ~
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Equations (7.3) and (7.4) give v 2 3vp. (7.5)

This means that, in order to induce vortex rings, ions must be accelerated to about three times
the speed of the most rapidly moving rings in an experiment. Experiments at the University of
Oregon, discussed in § 7 ( f) below, tend to show that the most rapidly moving ion-ring complexes
have about the same velocity as the ions which produce them. Furthermore, since these velocities
are in the range 30 to 40 m/s, we would need v; = 90 to 120 m/s to produce rings (i.e. about twice
the Landau velocity for roton emission). Since no ion velocities this high have been observed we
are forced to abandon the argument given above and are led to examine the role of thermal
fluctuations as a means of acquiring sufficient energy and momentum to produce vortex rings.

O~

O~ (5

(a)

Ficure 12 (a). Ton moving to the right with rotons localized near the equator predominantly polarized in the
direction of motion. (b) Ion moving into the page, suggesting successive stages in the nucleation of a critical
ring from a localized proto-ring. Circulation of ring is indicated by arrows.

The theory presented here takes the view that a roton, localized near the equator of an ion,
and polarized so as to face the oncoming flow of superfluid, acts as a nucleus, or proto-ring, for
the growth of a macroscopic vortex ring [cf. figure 124]. Roton localization will be discussed in
§7(b) and an estimate of the number of localized rotons, ny, will be obtained. It is sufficient to
suppose that collisions cause the proto-ring to grow until finally it is large enough to have a self-
induced velocity equal to that of the ion, that is, it is a critical vortex ring [or more properly
vortex segment as suggested by figure 125]. The critical vortex ring is supposed to be attached
to the sphere. While details of how this attachment occurs are not known, there is a natural
attraction experienced by an ion near the core of a vortex which has been extensively studied by
the authors (Donnelly & Roberts 19694). If we assume, then, that the critical ring has the appear-
ance illustrated in figure 125, we can make quantitative estimates of its velocity, shape, energy
and momentum which allow a calculation of the free energy barrier AF. This is carried out in
§7(d). One can now calculate the probability P that a localized roton will grow to critical size.
Thereafter the ring expands spontaneously, deriving the energy to do so from the electric field
producing the ion motion. The final radius of the ring will be determined by the condition that
the drag on the ring [cf. equation (A 5)] is balanced by the electric force:

eE = a[ln (8R/a) — }]. (7.6)

The P determined in this way will be a function of v; for a given set of conditions on pressure,
temperature and ®He concentration. The actual nucleation rate v per ion will be the product
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n: P of the number of localized rotons and P. From v we can calculate the probability exp (—»7)
that an ion will survive for 7 seconds without nucleating a ring. Experimentally, this means that
if N ions enter a drift space of length L moving at velocity v;, a fraction N;/N = exp ( —vL/[v;) of
those ions will arrive at the collector. The remainder (1 —N;/N) will have nucleated a vortex
ring. We shall find that N;/N decreases from unity only at quite large velocities [see § 7 (f) below].

We can make the following experimental predictions: at velocities for which exp (—v7) ~ 1,
all the ions entering the drift space will pass through at velocity »; without nucleating a ring. If
v is so large that exp (—v7) ~ 0, then all ions entering the drift space will emerge attached to
quantized vortex rings. In the relatively narrow range of velocities between, both ions and ion-
ring complexes will be observed. If the experiment is carried out by pulse techniques, we would
expect the ion pulse to be reduced in amplitude in this range of velocity, but to have a definite
arrival time. The rings, however, being nucleated according to a probability law, will have a
range of arrival times depending on their distance from the collector at the moment of nucleation.
Experiments testing these predictions will be described in § 7 (f).

(b) Localized roton stales; the drag force on a moving ion

This section is concerned with the calculation of the number of rotons which can act as nuclei
for the growth of a quantized vortex ring. We must first try to understand how a roton manages
to be in the neighbourhood of an ion and in the correct orientation to act as a nucleus for ring
growth; for at 0.6 K the probability of a roton being found within a volume the size of a negative
ionis 3.7 x 104, its orientation being, of course, random. We shall show that we can calculate the
required number using the concept of localized roton states, and that direct experimental evidence
for their existence comes from examining the drag on an ion at high velocities.

The connexion between localized roton states and drag can be appreciated from the following
discussion (Strayer et al. 1971). Suppose we wished to compute the drag on an ion by solving the
Landau equations (see, for example, Donnelly 1967, ch. 4). At low speeds the velocity field for
the normal fluid with respect to the ion would be given, at a radial distance r from the ion small
compared with v/v; (where v is now the kinematic viscosity of the normal fluid), by the Stokes

flow:
) . 3R R}
Vpr = ——vicosﬁ[l——2—rl-|-2—;3-], (7.7a)
. 3 3
vnozvlsm@[l—g—l—%], (7.75)
and for the superfluid by the potential flow:
Vgp = —vlcos()[l—%], (7.84)
. . R
Ugp = v1sin 0 1+—2—r3 , (7.85)

where 0 = 0 is the direction of motion and R is the radius of the sphere. At finite velocities the
variables, including pn, are functions of w = (v, — V) (see, for example, Donnelly 1967, pp. 112~
113) so that from (7.7) and (7.8) one could calculate w, then pn(w), solve anew for v,(w) and
vs(w) and so on. One would hope that this iterative procedure would converge. We shall attempt
to make some progress by means of a single interation, and by the use of the localized roton
scheme first introduced by Glaberson et al. (1968), for calculating the properties of a vortex core.
We cannot expect a very good solution from a single iteration, nor from using a continuum model

10 Vol. 271. A.
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when the mean free paths of the excitations are much greater than the size of the ion. We can
hope, nevertheless, to identify the governing physical processes.
The roton density in the presence of relative velocity of normal and superfluid is

N(T,w) = h‘af[CXP{(A +(p—o)?|2pt0— pw cos §) [k T} —1]71 d%, (7.9)

where ¢ is the angle between w and p. The integral in (7.9) can be evaluated by noting that the
effect of w is to depress the roton minimum to Ay = 4 — Fu,w?— pow and locate it at ¢ = 0 and
pm = po+pew [cf. figure 25]. The principal contribution to the integral arises from the neigh-
bourhood of the minimum (4m, pm). Since in the present application we find 4, /k T' may still be
considered significantly greater than unity, we drop the 1in (7.9) and, observing that p, > p,w,

we obtain N(T,w)[N(T, 0) = [sinh (pyw/k T)]/(pyw|kT), (7.10)

where N(T, 0) is the usual roton density, Nr. The number of rotons, nr, trapped in the well about
the ion should come by integrating N( 7, w) — N; over all space outside the ion, using (7.7) and
(7.8) to compute w. One finds that this quantity diverges, and that the origin of the divergence is
the Stokes approximation which leads to (7.7). This divergence may be removed by a proper
discussion of the Oseen flow which occurs at distances from the ion large compared with vfv;, and
by considering the incipient wake present at these distances. It would appear however that,

Ficure 13. Lines of [w| = constant near a moving ion. The curves are labelled with the corresponding value
of |w| measured in the unit »,. The direction of motion (0 = 0) is indicated by the arrow.
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although the integrated enhancement in roton density from these regions is large, it does not
correspond to oriented rotons trapped in the sense to be described presently. For this reason,
a finite value of 7, was obtained by cutting off the integration. The choice of cutoff may be
appreciated by reference to figure 13 which shows contours of constant | w| plotted in the unit v;.
These contours can be seen from (7.9) to be contours of constant well depth for trapped rotons,
and hence turning points for the motion of rotons whose energy is p,w less than 4. Those surfaces
which intersect the ion surround the deepest energy well (at the equator), and we have chosen to
integrate only to the last such surface, characterized by |w| = vi/4/3. This provides a finite
estimate for 7, the number of localized, polarized rotons. It also introduces a new length in the
problem, the distance / over which trapping occurs, and figure 13 shows that this is broadly of the
order of the radius of the ion.

The calculation just described assumes the roton is a point particle. Actually the roton wave-
length is about 0.4 nm, compared to the presently accepted ion radii R = 1.6 nm, Rj = 0.5 to
0.8 nm. We shall allow for this situation by making a first-order correction to the energies by an
uncertainty principle argument, as did Glaberson ez al. (1967). If V'is the volume available to a
trapped roton as estimated from figure 12 and the argument above, the spread of momenta is of
order Ap ~ %/V* and the spread in energies AE ~ (Ap)?/2p,. This energy spread is added to the
argument of the exponential in (7.9). Final values of nr come from integration by Simpson’s
one-third rule.

The detailed numerical results are temperature-dependent, and are not represented over the
entire range of the natural variable K = pyo/kT, (7.11)

by any simple function we have examined. We find however that, in the temperature range
0.6 K < 7'< 1.0 K and the velocity range 3 < K < 8, the following formulae approximate the

results: ne = NeR} &, (7.12)
sinh mK
where 6 = C[—-——mK - 1] , (7.13)

and m and C are chosen to fit best the numerical results (see table 7). Note that (7.13) is not a
good approximation outside the range indicated. We consider these results to be more reliable
than those we derived earlier [Donnelly & Roberts 1969¢, equation (11)] on the simpler approxi-
mation that vy is zero near the ion.

TABLE 7. NUMERICAL VALUES OF CONSTANTS USED TO CALCULATE n, AND THE
DRAG ON AN ION AT FINITE VELOCITIES.

TIK  m, m_ (o C_ S I ptlem2V-1g-1 p-lem2V-1g-1
0.6 0.9 1.0 4.94 7.97 0.060 0.012 1700 155

0.8 0.9 1.0 6.08 8.33 0.060 0.012 66 26

1.0 0.9 1.0 6.94 8.56 0.060 0.012 7.4 4.2

Let us now observe the ion from the laboratory frame. Noting first that zn; < 1, we see that the
ion is usually bare: a roton which approaches the ion is localized for a time which may be esti-
mated from equation (115) of Donnelly & Roberts (19694). For example, at 7" = 0.6 K and
v; = 30 m/s, the mean lifetime of a roton localized near a negative ion is about 3 x 10~3s, whereas
the interval between collisions with rotons of the bath is approximately 2 x 10-7s, The trapped
roton has a thermal velocity of order {v) = /(k7T/uy) ~ 91 m/s and hence fluctuates back and

10-2
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76 v R.J.DONNELLY AND P. H ROBERTS

forth in its well at a frequency of order {v)/R; = 6 x 10¥s~1. During the time the trapped roton
remains, the ion will experience about 150 collisions with the rotons of the bath and the trapped
roton will fluctuate in its well perhaps 1000 times between each of these collisions. We have in
addition, of course, phonon collisions, which will be more numerous.

One might, atfirst, believe that the relative occupation time of a roton localized near an ion is
not long enough to be significant. We shall find, however, that these rotons have three important
effects on the motion of the ion. First, they act as momentum transfer agents between the moving
ion and the stationary normal fluid outside. Second, they increase the fluctuation rate near the
ion by increasing the coefficient o, (see the appendix, equation A7) by the factor &y. Third, the
rotons are in the precise position and polarization to act as ‘proto-rings’ for the growth of a
macroscopic vortex ring. Our calculations will show that reasonable agreement with experiment
results when all these considerations are taken together.

The experimental study of vortex-ring nucleation involves measurements of the velocity of an
ion as a function of applied electric field. Let us, therefore, examine the way in which localized
rotons influence the velocity-field relationship, changing it significantly from the simple mobility
law which prevails at low velocities.

On a continuum picture, each time the roton fluctuates outward, it encounters the stationary
normal fluid outside; some ion momentum is lost on every return trip, the exact amount depending
upon the constitution of ‘normal fluid”’ outside, i.c. rotons, phonons and ®He atoms. The effective
mass associated with arotonism = p3/3k T [cf. Donnelly 1967, (3.73)]. The amount of momentum
transmitted from the ion by the fluctuating roton will be written as _fmv;, where f (the only free
parameter in this theory) is empirical and in general would be expected to be a function of the
temperature, pressure, *He concentration and ion species. The resulting drag on the ion, [y, is
the product of the number of trapped rotons, the fluctuation rate, and the momentum exchange

=J(63/3kT) v1 (KT ) R 'nx
= fpur Eevi (kT p) R2. (7.14)

Note that p3 N;/3k T = pur is the roton contribution to the normal fluid density evaluated far
from the ion (cf. Donnelly 1967, p. 86), and the factor &} is a measure of the local enhancement
of this quantity owing to the flow about the ion. The mechanism of momentum transport

per fluctuation: .
Fr

described here resembles ordinary viscous transport as discussed in the kinetic theory of gases
with the length [ replacing the free path, and Strayer et al. (1971) have referred to the process as
‘quasi-viscous’.

Equation (7.14) may be obtained a different way. Let us calculate the viscous stress

F = novfor

on the surface of the ion. The shear 0v,/0r is approximately v;/R; and the coefficient of viscosity
is 7 = nm {v) [ [cf. Donnelly 1967 (3.97)], where n = n,/R} is the number density, and we have
taken [ &~ R;. The drag on the ion is then a product of the stress and the area of the surface,
which recovers equation (7.14). Thus the quasi-viscous drag operates over the trapping length [
about the ion. Because [ acts in place of the free path, the coefficient of viscosity employed here
contains a density, which is absent for an ideal gas.

When experiments on ion motion are performed, an arrangement is generally chosen which
allows the ion to traverse a path at constant velocity, that is the drag force F on the ionis balanced
by the electric field E; i.e. F' = eE. Thus the field E required is the dependent variable, being the
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NUCLEATION OF QUANTIZED VORTICES 77

force per unit charge necessary to maintain the ion drift velocity v;. At low velocities the necessary
field is given by the mobility relation £ = v;/u where p is composed of contributions from phonons,
rotons and #He atoms:

= et gt gt (7.15)
The hypothesis we make is that the quasi-viscous drag which occurs as a result of roton localization
may be added to the low velocity contribution to give simply

E= ?-14‘ Ul(f) Pnr A//_C_Z'R? 6. (7‘16)
Y2 ¢ Mo

Equation (7.16) reduces to the usual mobility law at small velocities, since &y — 0 as vy — 0. This
means that the mobility of ions in helium 11 should strictly be defined as

pt = (REfom),, _. (7.17)

At very high velocities (K > 10) the drag increases as exp (3K), reflecting the tendency of rotons
to concentrate in the deepest part of the well at the equator where |w| — $v;. Ring nucleation
occurs before the asymptotic law begins to be valid, so that we must work in the intermediate
range 3 < K < 10, where &} is given approximately by (7.13).

40
|
'O.GK

v;/ms~t

0 500 1000
E/Vcm™?
F1cure 14. The drift velocity of positive ions (dashed lines) and negative ions (solid lines) at 7" = 0.6, 0.8,
and 1.0K calculated from equation (7.16) and the constants of table 7.

A family of drag curves for 7" = 0.6, 0.8 and 1.0K for positive and negative ions is shown in
figure 14. The curves are calculated from equation (7.16) using the values of m, C, f and u listed
in table 7. These calculated drag curves show a number of features of interest. The fields required
to bring ions up to the nucleation velocity (the end-points of the curves) are highly temperature-
dependent, whereas the velocities at which the quasi-viscous drag becomes apparent are not
dramatically temperature-dependent (they range from 20 to 30m/s in figure 14). The curves
shown are in general agreement with experiment, considering the relatively large uncertainties
in mobilities which still exist, and indicate that our empirical parameter fis independent of 7'
in the temperature range indicated, and at the vapour pressure.

A more detailed comparison of equation (7.16) with experiment will be given in § 7 ( f) below.
We shall see that the shapes of positive and negative ion drag curves are given quite accurately.
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78 - R.J.DONNELLY AND P. H ROBERTS

The results of the calculations of this section, then, provide evidence that the magnitude and
temperature-dependence of z; is reasonable, and provide strong corroboration for the present
theory of ion nucleation which assumes that localized rotons are the origin of macroscopic vortex
rings.
(¢) Localized helium-3 states

Andreev (1966) has suggested that when small amounts of *He are added to *He to produce
a dilute isotopic solution, some of the *He atoms may concentrate on the free surface of the liquid.
Rayfield (1968) and Dahm (1969) have suggested that this may be true also for the microscopic
free surface of a negative ion. This effect may be important in the production of rings by fluctua-
tions because the localization of 3He atoms increases the collision rate near the site of vortex
nucleation.

Andreev gives an estimate for the number of 3He atoms per unit area of surface, namely

3
N, = Z’gﬁp(ﬁ) (”72_11_) eoolk T (7.18)

nym’ \m*

where y is the effective mass of the impurity atom in the surface, m* is its effective mass in the
bulk solution and ¢, is the binding energy of the surface state. Experiments by Zinovyeva &
Bolarev (1968) give u/m* = 0.9 + 0.1 and ¢,/k = 1.8 + 0.2 K, but there is, of course, no assurance
that these parameters apply, without substantial modification, to the surface of a microscopic
negative ion bubble.

The effect of the condensed *He atoms will be to increase o4 [see the appendix, equation (A 8)].
We estimate this effect as follows. The number of 3He atoms near the growing vortex ring is
ny V, where V is the volume in which fluctuations are important. The discussion above shows this
to be roughly a shell between r = Ry and r = 2R;; we will in fact take it to be 3 ion volumes. Thus
the enhancement of ®He atoms can be described by a factor &, where

(GmR)ny  Ring’

6y = 3 (7.19)
We shall see that this will influence nucleation by changing a; to a;é’;, thus increasing the
effective total value of .

(d) Specification of the critical vortex; the free energy barrier and the curvatures

We suppose that a roton, in a localized state near an ion, as described in § 7 (3), acts as a proto-
ring, which by diffusion in momentum space becomes a critical vortex, as envisaged in figure 12.
We need not, as we have noted before, be too concerned with states between these limits, but the
initial and final states should be carefully characterized in order to compute the free energy
difference AF = Fy—F, shown in figure 2. This should be done in the presence of the rather
complex superfluid velocity field of equation (7.8).

The velocity of an element of vortex line depends on several factors: the presence of other
vortex elements, of boundaries, of applied flow, and on the structure of the core itself. Provided
the radius of curvature, R, of the element is large compared with its core diameter, the dominant
term in its velocity is the self-induced velocity, which is

K

1
V= mlng (7.20)
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NUCLEATION OF QUANTIZED VORTICES 79

It is directed perpendicular to the osculating plane at the point of the element considered. This
observation was first made by Arms & Hama (1965) who did not, however, give a value to the
small parameter ¢ appearing in (7.20). To make a theory consistent with equation (2.3) we
should take ¢ = \/ea/8R. Equation (7.20) should be modified to include the effects of distant
vortex elements, boundaries and core structure. These have the effect of modifying the constant
J/e/81in the value of € just quoted. When the vortex is placed in a flow we can, ignoring dissipative
effects, assume that there is added to the velocity above, the velocity of flow at the axis of the
element: shear in the applied velocity only distorts the cross-section of the core. It follows, then,
that provided vs < k/a we may obtain the shape of the critical vortex by equating the velocity in
(7.2) to the (reverse of the) local stream velocity.

R;

vortex
filament

Ficure 15. Geometry for calculating the shape of the critical vortex.

We set up spherical polar coordinates (7, 0, ¢), in which » = Rj is the ion surface, 0 = 0 is the
direction of motion of the ion and ¢ = 0 is directed towards the point 7 = 7, on the vortex line
farthest from the ion (cf. figure 15). Since the lowest energy state arises when the vortex lies in
the equatorial plane, we write the equation of its axis in the equilibrium state as

r=r(g), 6=1im (7.21)

and the objective now is to use (7.20) above to compute 7(¢). In doing so we shall assume that ¢ is
constant. Although this is strictly inconsistent, the error is small since it will emerge that the
radius of curvature in the solution changes slowly with ¢. Equation (7.20) now gives
1 —r(d%/d¢?) +r2+2(dr/dp)? 4 v,(r)

R [(dr/dg)+r2]F ~ « In(1fe)’

il

(7.22)

where v,(r) is the superfluid velocity defined by (7.85) for & = 4. If we measure 7 in units of Ry
and v,(r) in units of v;, the velocity of the ion in the laboratory, this may be written in the
dimensionless form

dv V2
7‘5 = 2V——X (7'), (7.23)
‘ dr\2? . v,

where Ve = (aa) ot S) =4 (7.24)

K 1
and /\ =mlng. (7.25)
Let o(r) = f "of(r) dr. (7.26)

1

For any axisymmetric body with fore-aft symmetry, we would have on the equatorial plane
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80 R.J.DONNELLY AND P. H ROBERTS

v, = 0y [r Or where ¥ is a stream function. Essentially g(r) in (7.26) is the stream function difference
(i.e. the flux) between the surface and the radius concerned. Then (7.23) gives at once

&+ (7.27)

where C is a constant, and hence

g=1t| drr — (7.28)
e

which determines ¢ = ¢(r), i.e. the form of the required curve.
In the case of interest, v, is the potential flow (7.85) past the sphere, i.e. in dimensionless units,

S@r) =1+3r73 (7.29)

so that by (7.26) g(r) = (r3—1)/2r., (7.30)

To determine C we note that a vortex core must meet a boundary normally, Otherwise the
vortex together with its image would have a cusp associated with infinite energy and velocity.
When 7 = 1, we must therefore have dr/d¢ = co. Thus by (7.24) and (7.27) we have C = 0. Itis
also clear by (7.24) and (7.27) that, at r = r, (where dr/d¢ = 0), g = Ar, i.e. by (7.30),

rd—2X3—1=0, (7.31)
giving o= A+ DI+ (=D o= (b+SAk (7.32)

Figure 16 shows the results of numerical integrations of (7.28) for four values of A. It is clear
that the larger A the more the vortex is pulled from the ion.

Ficure 16. Shape of the critical vortex on Arms’s ‘localized induction’ concept shown for four values of the
dimensionless velocity A. (a) and (b) are shown on different scales of the ion radius for convenience in display.

A corollary of the Arms-Hama concept is the idea, due to Feynman (1965), that the hydro-
dynamical energy E of the vortex flow can be computed to the same logarithmic accuracy by
multiplying its arc length by an energy per unit length, or tension, of (41)~! ps«?In (1/¢). We are
therefore interested in computing the arc length S(A) of the vortex and also, because of the
impulse p, its area 4(A). We find, still in dimensionless units,

B 7y 2Ar2dr _ no (r2—1) (r¥—1)dr
S = 2‘[1 (A2 = (P —1)7]’ A(A) fl r[(2Ar?)2— (PP — 1))} (7.33)
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The necessary integrations were performed numerically, the singularities of the integrands at
r = 7, being carefully allowed for. It should be evident from an inspection of figures 164 and 16
that no violence is done to the truth by neglecting the variation of v, with 7, obtaining then
a circle of radius yR; (say). Assuming that this curvature is that consistent with v, at r = 7, (and
¢ = 0) and reapplying the Arms-Hama result (7.20), we quickly obtain the results listed in
table 8, which also gives the corresponding quantities obtained from the more precise theory.
Clearly, the agreement between the two theories is good at any A: in fact they are identical in
both the limits A — 0 and A — co. We use this circle theory to find P and hence vr. We take E¢
to be that appropriate to a segment of vortex of length Ryy(m+ 2tan~! y), namely

E,= llTrpsKZRi [In (§%il() ~g] x(m+2tan—ty), (7.34)
which is consistent with Feynman’s tension idea and with equation (2.2). The momentum pg is
taken to be that corresponding to the area lying between the vortex and the ion, viz.

po = pskRY[3x* (T +2tantx) + x —tan~* x], (7.35)
and we set the velocity

of _ K 8R1X 1 2y
p 41TRiX[ln( a )_5_ (1+x% (r+2tan~ty) +2x]’ (7.36)

equal to the velocity v, at (ry, 0), namely

1
1 . 7.37
o | [ s ) 37
This, for given y, determines v.
We should recall that, since R; is so small for helium ions, the radius of curvature yR; of the

critical fluctuation is only a few multiples of a. Although classical vortex theory is surprisingly

TABLE 8
E, bo Eq—povy
A Po 0 pKRY; PoKR} pekRE v
Circle
0.1 4.07 1.074 0.02334 0.00845 0.0149
0.2 8.63 1.163 0.1045 0.0408 0.0637
0.4 18.65 1.393 0.5121 0.2281 0.2840
0.6 28.49 1.681 1.347 0.6549 0.6923
0.8 36.90 2.005 2.671 1.365 1.306
1.0 43.92 2.351 4.501 2.364 2.138
1.5 55.93 3.264 11.30 6.072 5.227
2.0 63.28 4.211 21.26 11.44 9.82
3.0 71.53 6.150 50.64 27.01 23.63
5.0 78.68 10.094 147.1 77.16 70.00
More exact theory
0.1 4.0 1.07 0.0228 0.00806 0.0148
0.2 8.4 1.15 0.0994 0.0371 0.0623
0.4 18.1 1.35 0.470 0.194 0.276
0.6 28.2 1.59 1.23 0.549 0.678
0.8 37.7 1.88 2.46 1.17 1.29
1.0 45.7 2.21 4.22 2.09 2.13
1.5 59.4 3.10 10.9 5.70 5.23
2.0 67.2 4.06 20.9 11.1 9.82
3.0 75.1 6.03 50.3 26.7 23.6
5.0 81.2 10.0 147 76.9 70.0

11 Vol. 271. A,
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82 R.J.DONNELLY AND P.H. ROBERTS

good for quite small values of R/a (see footnote on p. 45), the expression for E, and therefore v;,
becomes rather sensitive to the value of ¢ assumed or, equivalently, to the constant § taken in
(7.34). For example, if the constant is omitted entirely, the critical velocity is more than doubled
for each ion, taking it generally beyond the Landau velocity for emission of rotons.t Since this is
the case, we should also expect that image effects neglected in the present calculation should
affect E significantly. Fortunately, in the limit y — 0, it appears that images should have no
effect on our results whatever, since the critical fluctuation resembles a semi-circular arc on an
infinite wall. The image is also a semicircle which completes the circular ring. In computing the
kinetic energy of flow, however, the integration must be taken over only half the volume, and
therefore gives only half the classical expression, in agreement with (7.34) above. At other values
of x, the image of each element of the vortex is an element of strength kR;/r at the inverse point,
and directed in the obvious way (see, for example, Basset 1888 art. 311). For y — co this image
coincides with the diameter of the ion joining the points at which the vortex meets it. The
strength of the vortex is not, however, constant along this diameter, falling from its value « on the
ion surface to zero at its centre. In this limit, however, the corrections described extend over only
a tiny volume near the ion, and vanish in the limit y - co. At intermediate values of y, the
position is neither clear nor easy to assess, but we would surmise that, since the image effects do not
influence £ in either limit, they would not affect it greatly under any circumstance.

(e) Calculations and results

For simplicity, we have adopted again the one-dimensional form (3.42) of the escape
probability P:

P = (2m)lw,wedgexp{— (Fo—Fy) [kT}. (3.42)
By the reasoning of § 7 (b) below equation (7.9),
Fy = A—pyv,(ro), (7.38)
where v,(r,) comes from (7.37). On the assumption that the roton is the proto-ring,
Wi = pgt. (7.39)
The free energy Fo = Eg—pcv,(ry), (7.40)

is given directly by (7.34) and (7.35). The curvature w, comes by differentiating (7.36) once

more:
02E  —(In (8Ryy/a) —3) 2y -1
k= / 2 2| -1
wl = R pry {pski [A(Tr+2tan X+1+X2) } , (7.41)
and the vortex diffusivity is given by
Ag = da(m)psk3)t ph. (7.42)

The nucleation rate is determined by the product of the number of trapped rotons and the

probability of nucleation: — (7.43)

where 7, is given by (7.12) and (7.13). Given (7.13), the probability that an ion will traverse a
drift space of length L without nucleating a ring is given (as we have remarked before) by

NN = e, (7.44)
where T = Ljv, (7.45)

+ The theory of the onset of superflow of § 6 (a) also becomes sensitive to these constants as the diameter of the
tube decreases. We there adopted the constant — 7/4 in (2.2) in order to follow Gopal’s analysis and results.
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and we have used L = 5.2cm for purposes of comparison with experiments performed at the
University of Oregon.

The core parameters have been included in the calculations simply by writing the logarithmic
factor [In (8R/a) — 3] as In (§R/a), where & = 1.785. Other core sizes or models can easily be
included by changing £ or a.

Calculations have been carried out numerically using a Hewlett Packard 9100 A desk calculator
system equipped with an XY recorder output. The procedure is to look up all the constants for
the temperature and pressure of interest from § 7 (#) and the appendix: these are entered appro-
priately in the program. Execution is obtained by guessing an initial value of y, computing v;
from (7.36) and (7.37) and N/ N from (7.38 to 7.45). As the value of y is incremented, N;/N is
plotted out as a function of ;. The appearance of a representative calculation is shown in figure 17,
together with indications of the various velocity regions discussed above. At low velocities the
ions are bare and obey a mobility relation. At larger velocities, the ions begin to localize rotons
forming the ion-roton complexes described in § 7 (5). The ratio Ni/N decreased from unity when
the ion-roton complexes begin to nucleate macroscopic rings in noticeable numbers. We define
the characteristic velocity, v;,, for nucleation as that velocity for which vr = 1, or Mj/N = e, At
higher velocities nearly all ions have nucleated vortex rings.

1.0
0.6
=
R
0.2 |
l
|
0— A " N |
A4 B f—c| —D—
|
L 1 | l J
0 20 Vi 40

v /ms™?

FicurE 17. Appearance of a representative calculation of N,/ as a function of v, We can distinguish four regions,
A to D. Region A corresponds to very low velocities, and to ‘bare’ ions. Region B is the régime of ion-roton
complexes. Region C is a mixed region of ion-roton and ion-ring complexes. Region D is all ion-ring complexes.
The characteristic velocity, v, is determined by the condition N,/N = 1/e.

The rapid cutoff of Ni/N in the neighbourhood of v;c is due to the finite lifetime of ion-roton
complexes in a manner analogous to the escape of ions from quantized vortex lines which was
studied earlier by us (see Donnelly & Roberts 19694, figures 9 and 10). This similarity to our
previous calculations prompts us to refer to the cut-off characteristic of figure 17 as a ‘lifetime
edge’.

The ion radii to be used require some discussion. The negative ion radius estimated by Parks &

11-2
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Donnelly [cf. figure 95 of Donnelly & Roberts 19694] is R;” = 1.6nm, a value independently
confirmed by Zipfel & Sanders (1968). The radius of the positive ion, 0.79 nm, has been con-
sidered to be somewhat too large. Dahm & Sanders (1966) estimate 0.67 nm, whereas Schwarz
& Stark (1969) quote 0.5nm. We note that 0.65 nm is within a healing length of all estimates,
and hence is a reasonable compromise. We adopt, therefore, Ri* = 0.65nm and R = 1.6nm
for the calculations of this paper.

We show in table 9 the results of calculations of v;¢ for positive and negative ions at the vapour
pressure. Values of yy which determine the size of the critical vortex are also quoted.

TABLE 9. TEMPERATURE DEPENDENCE OF ¥;, AND Yo FOR POSITIVE
AND NEGATIVE IONs (P = 0, ¢ = 0.128 nm)

T/K 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4
v /ms—1 45.5 44.3 42.5 39.8 37.3 35.2 33.4 31.9 29.3 26.8
X 0.64 0.67 0.73 0.83 0.92 1.02 1.11 1.20 1.38 1.58
v /ms™t 38.7 37.3 35.5 33.1 31.1 29.4 28.0 26.8 24.6 22.7
Xo 0.29 0.31 0.34 0.39 0.44 0.48 0.53 0.57 0.65 0.75

Experiments yielding the temperature dependence of positive and negative ion nucleation
velocities have been carried out below 1 K by Cunsolo & Maraviglia (1969). They found evidence
for two branches of ion-ring complexes. The branch corresponding to the conditions of the
present theory is shown in figure 18, the other branch will be discussed presently. Cunsolo &
Maraviglia recorded the threshold field for ring formation, and the corresponding velocity. We have,
therefore, calculated that quantity from the theory by assuming that the threshold would be seen
when approximately 10 %, of the ion complexes had nucleated rings, that is N/ N = 0.90. These
results are plotted as the solid lines in figure 18, and it can be seen that the magnitude and
temperature-dependence of the onset velocities are in satisfactory agreement with experiment
over the range 0.4 K < T < 1.0K.

40 2
positive ions

30
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£ |
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04 0.6 0.8 10

T/K

Ficure 18. Onset velocities determined by Cunsolo & Maraviglia (1969) for positive ions (open circles) and
negative ions (closed circles). Solid lines are calculated from the theory for the onset velocity (N,/N = 0.90).
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NUCLEATION OF QUANTIZED VORTICES 85

The second branch of rings observed by Cunsolo & Maraviglia (1969) was also observed by
Rayfield (1968). It arises in the following way: the determining variable in nucleation is the
velocity of the ion; the electric field plays no essential part. Atlow enough temperatures, where a is
small, the formation of fast ions by a-particles at the source gives them sufficient velocity that
U1 > vi¢, and rings are produced directly. These rings will decay unless sufficient field is present
near the source to overcome the drag. It is easy to estimate the magnitude of the minimum field,
Enin, necessary to maintain rings at the critical size by setting y¢ &~ 1, so that

~ a 8R1 1
Enin > p [ln (7) _Q] . (7.46)

Thus if the experiment is arranged to have a field £ > Enin between the source and the first grid,
source rings will be observed in the rest of the apparatus. At certain temperatures, source rings
may be so prevalent that one may have to arrange a region where £ < Enjn to allow source rings
to decay away. At very low temperatures it will be nearly impossible to observe bare ions: for
example, at 7= 0.1 K, En;in isonly 5mV/cm, which can easily be produced by stray potentials.
This circumstance has been noted by Neeper & Meyer (1969) and a similar explanation advanced
by Gamota & Sanders (1968).

40r

101

0 l I ! ] | ! ]
10 1.2 14 16

T/K

Ficure 19. Velocities for nucleation of rings as estimated from drag curves
for positive ions by Bruschi et al. (1968).

The region above 1K is very difficult to explore because the field required to maintain ring
velocities of this order increases to the order of many kilovolts/centimetre owing to the high
energy loss, given by a[In (8R/a) — 4] ergs/cm. Further, the positive ion ceases to be permanently
attached to a vortex above 1K (cf. Donnelly & Roberts 19694). Bruschi, Mazzoldi & Santini
(1968) were able to observe a high field velocity for positive ions, independent of field, which was
interpreted as an equilibrium between creation and detachment of rings from ions, and hence
a rough guide to the magnitude of vff,. Their results are shown in figure 19 compared with the
present theory. The agreement in magnitude is good, considering the uncertainties in the indirect
experimental determination. The theory, calculated with constant a, will give a v, which falls off
more rapidly than is shown when the temperature-dependence of the core radius is finally known.
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The difference between positive and negative ions on our model reflects several factors. One is
the size of the ion. Table 10 shows the dependence of v;c on ion radius at 7" = 0.65K and at the
vapour pressure. The critical velocity falls steadily with increasing ion radius. The effect can be
seen on comparing positive and negative ions at the vapour pressure: v = 38.5m/s and
Vi = 32.0m/s. On applying pressure, P, we would expect little effect on the positive ion since its
radius is not thought to vary much with pressure. The negative ion, however, being a bubble, will
shrink in size (cf. Donnelly & Roberts 19694, figure 11); at 20 atm (1 atm &~ 100kPa) itappears to
have decreased in size to about 1 nm. On the basis of table 10 the critical velocity would increase
from 32.0 to 35.2 m/s. There are, however, other effects. The values of 4/, 4, and p, all change as
outlined in the appendix. Taking all variations into account we find,at7" = 0.65K, v;; = 32.05m/s
at the vapour pressure and 35.26 m/s at 20 atm, a slightly larger increase than suggested by size
alone. Rayfield (1968) working between 0.3 and 0.6 K finds nearly a 50 9%, increase. Indeed his
results at high pressures would appear to correspond to an ion radius smaller than that of even
the positive ion !

TaABLE 10. THE VARIATION OF ;, WITH ASSUMED ION RADIUS R, AT 7" = 0.65 K

R,/nm 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
»/ms— 425 405 390 368 352 339 329 320 314 308

The present theory suggests that at low temperatures, adding *He will increase the fluctuations.
The extent of this effect is examined in table 11 at 7" = 0.3 K for positive and negative ions.

TABLE 11. INFLUENCE OF VARYING CONCENTRATIONS OF 3HE 1N 4HE
ON THE CRITICAL VELOCITY

ngfny 10-10 10-8 10-8 10-4 10-2
vt /ms1 46.16 46.07 44.71 42.79 41.11
v /ms~1 39.17 37.83 36.22 34.83 33.62

There is a difference in the effect of doping—slightly greater reduction in v;. for the negative
ion because of localization of 3He atoms on the surface, as described in § 7 (¢). The condensed *He
on the negative ion tends to reduce the effect of adding hydrostatic pressure. Rayfield (1968) has
observed this effect, but, again, the magnitude of the effect he obtains is larger than we can
account for. It is entirely possible, of course, that the concentration of 3He on the surface of a
negative ion is much greater than that estimated for a macroscopic free surface by Andreev.
Furthermore, the binding energy ¢, may well be a function of pressure. Systematic measurements
of nucleation as a function of temperature, pressure and *He concentration may open the way to
understanding these effects.

(f) Nucleation experiments and comparison with theory

Although experiments on critical velocities were available at the time this theory was being
developed, experiments testing some of the features specifically related to the fluctuation picture
were lacking. A series of such experiments were begun by D. M. Strayer and R. J. Donnelly at
the University of Oregon, some of which will be summarized here (Strayer 1971).

One characteristic feature of the nucleation picture developed here is the lifetime edge.
Observation of this edge requires two separate experiments: a measurement of v; as a function of
electric field £ (or in practice the voltage V across the drift region) and measurement of N/ N,
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Ficure 20. Apparatus used at the University of Oregon for studying the nucleation of vortex rings by ions.

A representative set of clectrode potentials for observing negative ions is shown.
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88 R.J.DONNELLY AND P. H ROBERTS

which is proportional to the ion current reaching the collector, as a function of E. An apparatus
designed for these measurements is illustrated in figure 20.

The mobility cell was constructed by modifying the apparatus used earlier to measure ion
motion along vortex lines (cf. figure 12, Donnelly & Roberts 19694). The principal change was
to put the radioactive source which produces the ions on the bottom of the apparatus. The major
improvement required for the nucleation experiment was better time resolution. One can see
from figure 14 that velocities greater than 30 m/s must be measured in this experiment to a
relative accuracy of better than 1 %,. For a drift space L = 5.2 cm, this implies measuring times
of flight of magnitude 1.5ms to an accuracy of 15us. An electrometer was built following the
guide lines of Wing & Sanders (1967). A 0.6 to 6.0 pF capacitor was placed in parallel with a
10°Q resistor in the feedback loop of an Analog Devices 149 A operational amplifier, which
provides a 30 us rise time with the feedback capacitor adjusted to minimum.

The noise output is sufficiently great that signal averaging is required. Our 400 channel RIDL
analyser has a minimum dwell time of 12.5 us per channel and a switching time of 12.5 us. The
time resolution required in the experiment is obtained by averaging on a Princeton Applied
Research TDH-9 Waveform Eductor which has a minimum resolving time of about 1 us. The
output of the operational amplifier electrometer is first fed into a Tektronix 1 A7 A pre-amplifier.
The signal stored in the Eductor can be averaged further in the RIDL analyser, using a Hewlett
Packard 2212 A voltage-te-frequency converter which converts voltage levels stored on 100 capac-
itors in the Eductor to pulse times that can be counted and stored in the RIDL analyser. This
transfer of data from the faster signal averager to the slower one can be accomplished without loss
of time resolution because the Eductor can record the signal at one sweep rate and read out the
signal at another (in this case, slower) sweep rate. By adjusting these sweep rates, the signal is
spread out in time (the time axis is ‘stretched’) by a factor of 100. By repeating the sequence of
storing on the Eductor and reading into the RIDL many times it is simple to improve the signal-
to-noise ratio to the point where it is easier to analyse. Appropriate time delay circuitry makes it
possible to use the 100 channels of the Eductor in the immediate time domain of the received
pulse. These techniques have made possible the precise ion velocities needed in this investigation.

We show in figure 21 results of such measurements as a function of voltage V (between G 3 and
Cin figure 20) at 7" = 0.60, 0.65 and 0.70 K for negative ions and in figure 22 results at 7" = 0.60,
0.65, 0.70 and 0.75 K for positive ions. The solid lines represent equation (7.16). One can see
that this relation provides a very useful interpolation formula for the data.

The next step is to measure the current as a function of field. This is done by using a relatively
wide pulse which allows the current to equilibrate while it is on. Typical results are shown in
figure 23 for negative ions at 7" = 0.65 K. Below 300V the current is continuously rising in a
manner which reflects the characteristics of the source of ions. We assume the curve would carry
on as suggested by the extrapolation except for lifetime effects above 300 V. The current is
measured on the ordinate in terms of the current, ,q,, present at 260 V. This was done because
amplitude measurements were plagued by drifts which appeared to be associated with the
build-up of charge in the source region. Repeated comparisons with Iy, helped compensate for
this drift. From time to time the source voltages were ‘retuned’ to optimize the current. The data
for the lifetime edge were taken as being proportional to the value of I/I,4, at a given voltage on
the lifetime edge, divided by the amplitude indicated by the solid curve at the same voltage. This
yields Ni/N as a function of V and hence E.

The lifetime edge is now produced by combining the data for the measurements as outlined
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in §7 (¢). (See figure 24.) Considering the difficulties and uncertainties in both the theory and
experiment the agreement in magnitude is probably fortuitous. The slopes of the experimental
points would appear to exceed slightly that of the theoretical curve. Three other examples
are shown in figures 25 to 30, demonstrating again that the theory quite satisfactorily accounts
for nucleation at the vapour pressure. We have already indicated in § 7 (¢) that the situation at
higher pressures for negative ions is qualitatively correct, but not yet satisfactory in magnitude

(Strayer 1971).
T=0.60K

_ 39l _ 0.65 0.70
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Q) é 16
=uw
- 8
98
IF
e U w ! Il Il L
8 <0 0 200 400
o) (£ 14A%
§§ Ficure 21. Velocities v, for negative ions at the vapour pressure determined from time-of-flight experiments across
raym the drift space of length L = 5.2 cm. The voltage difference V refers to the region G 3-C in figure 20. The solid

curves come from equation (7.16).

40+ T=0.60K 0.65 0.70

0.75

v/mst

700 400
Y

Ficure 22. Results as in figure 21, but for positive ions.

THE ROYAL A
SOCIETY

Another characteristic of the present theory which can be seen experimentally is the random
nucleation of rings as the ion traverses its flight path. We show in figure 314 a sharp pulse corre-
sponding to the arrival of a group of ions under conditions that the velocity is just short of the
life-time edge. An increase in the drift space voltage of just a few volts produces the dramatic
change seen in figure 31 4. Here the ion pulse amplitude has dropped considerably (it is indicated
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90 R.J.DONNELLY AND P. H. ROBERTS

by the small arrow) and a large irregular pulse owing to rings now follows it. One can see that
the quickest rings move at about the same velocity as the ions, a circumstance made use of in
§ 7 (a). Higher resolution experiments confirm this more precisely.

=
7

amplitude I/l
=
=

1 | 1 | ) | L }{ 1
0 100 200 300 400
17A%
Ficurk 23. Ion current amplitude as a function of drift space voltage. The amplitudes were continually referred to
the current at 260V to compensate for current drifts during the run. The solid curve is chosen to extrapolate

the currents beyond the lifetime edge (here about 300 V). The probability N;/N is taken as the ratio of the
observed amplitudes to that represented by the solid curve.

1.0 T |

N/N

1 1 | I |

0 10 20 30
v /mst

Ficure 24. The experimental points represent the probability N/ as a function of v; obtained by combining data
such as in figure 23 with data such as in figures 21 and 22. The magnitude of the experimental uncertainties is
indicated by bars on three representative points. The solid curve is calculated by the method outlined in
§7(¢). Here T = 0.60K, P = 0, R, = 1.6 nm, a = 0.128 nm and the ions are negative.

A final comment should be made here. The gratifying agreement of the theory at the vapour
pressure with experiment is nof sufficient to justify the assumption that the smallest rings are rotons.
Close inspection of the consequences of equation (7.43) reveals that the nucleation rate of an ion
is independent of the gap 4 and varies only slowly with p,. An assumption that the smallest rings
have a different energy Er and momentum pm [presumably near (4, py)] would not substantially
affect the results obtained here.
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Ficure 25. Results as in figure 24, except 7' = 0.65 K.
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FicUrE 26. Results as in figure 24, except T' = 0.70K.
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v /m st
Ficure 27. Results as in figure 24 but for positive ions, 7= 0.60K, R, = 0.65nm, P = 0, ¢ = 0.128 nm.
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Ficure 28. Results as in figure 27, except T'= 0.65 K.
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Ficure 29. Results as in figure 27, except T = 0.70 K.
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Ficure 30. Results as in figure 27, except 7' = 0.75 K.


http://rsta.royalsocietypublishing.org/

A

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

NI
O H
~ =
kO
= O
=w

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NUGLEATION OF QUANTIZED VORTICGES 93

8. ROTON-PHONON RELAXATION TIMES: THE ATTENUATION OF SOUND

We referred at the end of § 2 to the adjustment of the population of rotons and phonons across
the barrier B of figure 1. Consider the presence of a sound wave in otherwise quiescent liquid
helium. On compressing the helium adiabatically, the value of A4/k will be reduced, the velocity
ofsound will increase, and Ny and N, will tend to adjust towards equilibrium values corresponding
to these new conditions. The rate of redistribution of energy will depend on the details of the
populations, and in general one would expect the phonon gas to adjust its population in some
characteristic relaxation time, the roton gas in another, with yet a third accounting for the inter-
conversion of phonons and rotons. If the frequency of the sound wave is comparable with the
reciprocal of any of these relaxation times, one can, in general, expect absorption to occur.

current/arbitrary unit

)
0 0.5 1.0
time/s

Ficure 31. (a) Ion pulse produced by negative ions traversing a time-of-flight path of 5cm at 7'= 0.74 K. The
transit time is too rapid to resolve the arrival time. The voltage, 181.9V, was just below the lifetime edge so
that N;/N =~ 1. (b) Result of raising the voltage to 213.9 V, the lifetime edge region. The ion pulse, indicated
by the arrow, can be seen with its peak at the same time as in (@), but its amplitude considerably reduced. The
lost ions appear attached to rings which move much more slowly, and because they nucleate at random
throughout the flight path, produce the large irregular pulse shown here.

The theory of these processes was pioneered by Khalatnikov. It is, of course, detailed, and may
be consulted in various references, notably Khalatnikov (1965), Wilks (1967) and Keller (1969).
Our discussion has to do only with the phonon-roton conversion process, and we shall have
reference to the work of Dransfeld, Newell & Wilks (1958).

Khalatnikov considers the roton—phonon process
R+ P =R, +R;, (8.1)

which will occur with appreciable probability only if the phonon on the left has an energy of the
12-3
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order of 4. Khalatnikov finds that if the rate of change of phonon and roton populations is
itten a; : : ¢

written as Np = Fpr(/'('r—//'p): Nr = —Fpr(ﬂr_ﬂp): (8'2)

then Iy ~ 4% 109 e24IkT, (8.3)

where the numerical coeflicient is obtained by comparison with experiment. The corresponding
relaxation time 0, is given by

b{; — 4 % 10% e—24/kT (gﬁNir +%’%%)p . (8.4)
In (8.3) and (8.4) the chemical potentials of roton (x#r) and phonon () and their variations are
estimated by Dransfeld et al. in an appendix. Numerical values of 1/6,,, are given in table 12 using
the (now slightly dated) numerical constants of the authors. One can see that sound of the order of
10 MHz will be affected by the phonon-roton conversion process at temperatures just below 1 K.

The theory considered in this paper offers an alternative view of this relaxation process. We can
imagine that instead of the collision process (8.1), rotons can diffuse over the barrier B (of figure 1)
as the result of many collisions. In doing the calculation we shall retain the view that the roton is
a small ring in order to estimate the appropriate diffusion constants. Although this is a drastic
assumption it leads to cross-sections near B of the order of those used by Khalatnikov.

If we imagine the roton and phonon populations are perturbed, equilibrium will be restored
by conversion of rotons to phonons (£,;) and phonons to rotons (F,,) according to the relations

Ni = =Py N, + P, N,, (8.5)
and Ny = — Py N,+ By N.. (8.6)
In the steady state P, = (N[ N,) P, (8.7)

and it is an easy matter to show from (8.5) and (8.6) that the deviations from this state decay
aperiodically at the e-folding rate of

A= PI‘D+PD!‘ = (1 +M‘/Np) Prp, (8.8)

where we have used (8.7) in the last step.

The expression for P, for the escape of rotons from their well, or more precisely, their trough
in three-dimensional momentum space, over the maximum point, or more precisely the rim, has
been given in (3.40): po_ AC;UACUC (&’)26—-AElkT’ (5.9

™ o
where w3 (= 1/p,) is the curvature of the roton trough, 0% (= 1/0.53m) is the curvature of the
rim, p, is the momentum of the trough, po (~ 11.12nm*) that of the rim and E; (= 13.97k K)
its energy. For /A we use the expression we have employed in previous sections, obtaining
7.67 x 10~5ap; % g/s where a and ps are the quantities listed in the appendix.

The results for A are shown in table 12 compared with the results for 1/6,,, given by Dransfeld
et al. One can see that A and 1/6,, are generally comparable in magnitude and temperature
dependence—values of 1/6,, are not considered to give quantitative agreement with experiment.

The present calculations may be easily extended to take into account the effects of pressure and
added helium-3 as described in the appendix. Using equation (A 8) we have recomputed A for a
series of concentrations at 7" = 1.2 K. The results are shown in table 13, and they show that added
3He increases A substantially, the effect being in some ways equivalent to raising the temperature.
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TABLE 12. COMPARISON OF RELAXATION TIMES ON KHALATNIKOV’S
AND THE PRESENT MODELS

T/IK Ot/s™t Afst
0.6 9.29 x 10* 1.02x 103
0.7 1.26 x 108 2.69 x 10*
0.8 1.02 x 107 3.40 x 105
0.9 6.16 x 107 2.61 x 106
1.0 2.78 x 108 1.46 x 107
1.1 9.58 x 108 6.40 x 107
1.2 2.64 x 10° 2.29 x 108
1.4 1.24 x 100 1.88 x 10°
1.6 3.75 x 1010 1.00 x 1010

The methods described in this section are, in a sense, an opposite extreme to Khalatnikov’s
‘lucky collision’ model of (8.1). In our model, which depends upon a diffusion process, and hence
many collisions, a finite time of order (p— po)%/Bck T (cf. remarks below 3.18) must elapse before
a new population suddenly set up at the bottom of the roton trough can establish, by diffusion,
the equilibrium current used in the calculation above. This time at 0.8 K is of order 2 x 10-8s.
Were this not small compared with the period (&~ 10-7s) of the sound wave, our diffusion process
could not operate. The process (8.1), however, would still be viable. The validity of the processes
we have proposed would have to be resolved, in a given experimental situation, by investigating
the number of phonon-roton and roton-roton collisions which occur during one cycle of the
transducer.

TaBLE 13. EFFECT OF ADDING 3HE ON THE ROTON-PHONON RELAXATION TIME

%3He 0 0.5 1.0 2.0 3.0 4.0 5.0
Afst 2.29 x 108 3.63x 108 4.97 x 108 7.63 x 108 1.03 x 10° 1.30 x 10° 1.56 x 10°

APPENDIX. DERIVATION OF NUMERICAL CONSTANTS USED
IN THE CALCULATIONS

The calculations described in the body of this paper cover a wide range of temperatures and
involve the use of a number of constants whose experimental magnitudes are still subject to
considerable uncertainty. We present, therefore, a short discussion of the origin of our estimates,
and tables of their values.

Table A 1 presents values of pn, ps, ps/p) and p, T/ps from 1.1K to the A-point. Values for py
from 7'= 1.1to T' = 1.98 K were calculated by Tough, McCormick & Dash (1963) from experi-
mental specific heat and second sound data. Values of ps in this range were calculated from
Ps = P—pPn, where p, = 0.1459g cm=3, Actually p varies from 0.1459 at 7, to 0.1450 g/cm3 at
0K this difference has been neglected throughout since using p, leads to the best agreement
near 7, where small differences are important, and gives less than 1 9, error at lower tempera-
tures. A number of experimental investigations have shown that near 7}, ps/p, = A(T)— T')3.
This is an asymptotic relation valid only very near 7} ; we have chosen a value of 4 = 1.43 (Tyson
& Douglass 1966) which makes ps agree fairly closely with the other estimate at 2 K. The point
where data from second sound is joined to oscillatory disk data is 7= 2 K.

Table A 2 gives values of 4/k. In the range 0 to 2 K we have used an expression due to Bendt,

Cowan & Yarnell (1959) Alk = 8.68—0.0084T". (A1)
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T/K
1.10
1.20
1.30
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.161
2.162
2.163
2.164
2.165
2.166
2.167
2.168
2.169
2.170
2.171
2.172
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2N
0.00212
0.00405
0.00686
0.0108
0.0136
0.0165
0.0205
0.0247
0.0289
0.0346
0.0400
0.0472
0.0504:
0.0536
0.0568
0.0600
0.0624
0.0678
0.0702
0.0740
0.0778
0.0814
0.0865
0.0919
0.0974
0.1034
0.1098
0.1132
0.1168
0.1207
0.1249
0.1295
0.1350
0.1356
0.1362
0.1369
0.1376
0.1383
0.1390
0.1398
0.1406
0.1416
0.1426
0.1438
0.1459

PalPa
0.986
0.973
0.953
0.926
0.907
0.887
0.859
0.831
0.802
0.763
0.726
0.676
0.655
0.633
0.611
0.589
0.572
0.535
0.519
0.493
0.467
0.442
0.407
0.371
0.332
0.291
0.247
0.224
0.199
0.173
0.144
0.112
0.0750
0.0707
0.0664
0.0619
0.0572
0.0523
0.0472
0.0418
0.0360
0.0297
0.0227
0.0143
0

Pa T/ps

1.12
1.23
1.36
1.51
1.60
1.69
1.80
1.93
2.06
2.23
2.41
2.66
2.78
2.91
3.04
3.19
3.32
3.59
3.74
3.98
4.24
4.52
4.96
5.50
6.20
7.15
8.50
9.42
10.7
12.3
14.9
19.2
28.8
30.6
32.6
34.9
37.8
41.4
45.9
51.8
60.2
73.0
95.6

1562

(In this table the second figure in an entry indicates the power of 10, e.g. 2.18 =15 = 2.18 x 10-15,)

T/K
0.01
0.02
0.04
0.06
0.08
0.10
0.15

AJk
8.68
8.68
8.68
8.68
8.68
8.68
8.68

%

0
0
0
2.94 -69
1.60 -53
3.97 —44
1.46 -31

TaBLE A1
Pa AT/mK

0.1438 1072

0.1419 972

0.1390 872

0.1351 772

0.1323 722

0.1294 672

0.1254 622

0.1212 572

0.1170 522

0.1113 472

0.1059 422

0.0987 372

0.0955 352

0.0923 332

0.0891 312

0.0859 292

0.0835 272

0.0781 252

0.0757 232

0.0719 212

0.0681 192

0.0645 172

0.0594 152

0.0540 132

0.0485 112

0.0425 92

0.0361 72

0.0327 62

0.0291 52

0.0252 42

0.0210 32

0.0164 22

0.0109 12

0.0103 11

0.00968 10

0.00903 9

0.00835 8

0.00763 7

0.00689 6

0.00610 5

0.00526 4

0.00434 3

0.00331 2

0.00209 1

0 0

TABLE A2
oy o, o

2.18 -15 5.59 -21 2,18 -15
3.08 -15 8.94 -20 3.08 -15
4.36 -15 1.43 -18 4,36 -15
5.34 15 7.24 -18 5.35 -15
6.17 ~15 2.29 -17 6.19 -15
6.90 -15 5.59 -17 6.95 -15
8.45 -15 2.83 -16 8.73 -15

N,

r

6.10 -73
1.94 -41
1.14 -25
3.38 -16
1.62 -3

alN,
0
0
2.66 -78
1.04 -55
7.06 —40
2.35 -30
1.33 -17
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TABLE A2 (cont.)

T/K Alk o, ay o, a N, an,
0.20 8.68 2.80 -25 9.75 15 8.94 16 1.06 -14 3.38 3 3.59 11
0.25 8.68 1.65--21 1.09 14 2.18 156 1.31 -14 222 17 2.91 -7
0.30 8.68 5.38 -19 1.19 -14 4.52 -15 1.65 —14 793 9 1.31 4
0.35 8.68 3.35 17 1.29 -14 8.38 16 2.13 ~-14 534 11 1.14 -2
0.40 8.68 7.44 -16 1.38 -14 1.43 -14 2.88 —-14 1.27 13 3.66 -1
0.45 8.68 8.30 -15 1.46 -14 2.29 -14 4.58 -14 1.560 14 6.87
0.50 8.68 5.71 -14 1.54 -14 3.49 -14 1.07 -13 1.09 15 1.17 2
4 0.55 8.68 2.77 -13 1.62 -14 5.11 -14 3.44 -13 5.53 15 1.90 3
<;;fl/” . 0.60 8.68 1.03 -12 1.69 -14 7.24 -14 1.12 -12 2.15 16 2.41 4
N 0.65 8.68 3.14 -12 1.76 -14 9.97 -14 3.25 -12 6.81 16 222 5
— 0.67 8.68 4.67 -12 1.79 -14 1.13-13 4.80 -12 1.03 17 4.95 5
< S ~0.70 8.68 8.14 -12 1.82 -14 1.34-13 8.29 -12 1.83 17 1.52 6
>" — 0.75 8.68 1.86 -11 1.89 -14 1.77 -13 1.88 -11 4.34 17 8.16 6
O 23| 0.80 8.68 3.84 -11 1.95 -14 2.29 -13 3.86 11 9.24 17 3.67 17
th e 0.85 8.68 7.26 -11 2.01 -14 2.92 -13 7.29 -11 1.80 18 1.32 8
= QO 0.90 8.68 1.28 -10 2.07 -14 3.66 -13 1.28 -10 3.27 18 4.20 8
I O 1.00 8.67 3.39 -10 2.18 -14 5.59 -13 3.40 -10 9.14 18 3.11 9
[T 1.10 8.66 7.563 -10 2.29 -14 8.18 -13 7.54 -10 2.13 19 1.60 10
1.20 8.65 1.46 -9 2.39 -14 1.18 -12 1.46 -9 4.32 19 6.33 10
2‘% 1.30 8.63 2.59 -9 2.49 -14 1.62 -12 2.69 -9 7.95 19 2.06 11
o o) 1.40 8.59 4.28 -9 2.58 -14 2.22 -12 4.28 -9 1.36 20 5.84 11
I = 1.45 8.57 5.36 -9 2.63 -14 2.55 12 5.36 -9 174 20 9.32 11
su L 1.50 8.54 6.66 -9 2.67 -14 2.92 -12 6.66 -9 2.20 20 1.46 12
mﬁ © 1.55 8.50 8.21 -9 2.72 -14 3.39 -12 8.21 -9 2.75 20 2.26 12
9 Z 1.60 8.45 1.00 -8 2.76 -14 3.85 -12 1.00 -8 3.43 20 3.45 12
Eé 1.65 8.40 1.22 -8 2.80 ~-14 4.43 -12 1.22 -8 4.21 20 5.12 12
o = 1.70 8.34 1.46 -8 2.84 -14 5.08 -12 1.46 -8 5.14 20 7.562 12
1.75 8.26 1.76 -8 2.89 -14 5.80 -12 1.76 -8 6.28 20 1.11 13
1.80 817 2.11 -8 2.93 -14 6.61 —-12 2.11 -8 7.63 20 1.61 13
1.82 8.12 2.28 -8 2.94 -14 6.91 -12 2.28 -8 8.29 20 1.89 13
1.84 8.08 2.48 -8 2.96 -14 7.21 -12 2.45 -8 8.95 20 2.19 13
1.86 8.03 2.64 -8 2.97 -14 7.66 —12 2.64 -8 9.69 20 2.55 13
1.88 7.98 2.84 -8 2.99 -14 8.00 -12 2.84 -8 1.056 21 2.97 13
1.90 7.93 3.04 -8 3.00 —-14 8.49 -12 3.04 -8 1.13 21 3.44 13
1.92 7.87 3.28 -8 3.02 -14 8.86 —-12 3.28 -8 1.22 21 4.02 13
1.94 7.81 3.563 -8 3.04 -14 9.23 12 3.563 -8 1.32 21 4.67 13
1.96 7.75 3.79 -8 3.05 -14 9.79 -12 3.79 -8 1.43 21 542 13
1.98 7.68 4.09 -8 3.07 -14 1.02 -11 4.09 -8 1.55 21 6.33 13
2.00 7.63 4.36 -8 3.08 -14 1.08 -11 4.36 -8 1.66 21 7.23 13
2.02 7.57 4.66 -8 3.10-14 1.12 -11 4.66 -8 1.78 21 8.32 13
P 2.04 7.51 4.98 -8 3.12 -14 1.17 -11 4.98 -8 1.92 21 9.54 13
> ‘ 2.06 7.46 5.29 -8 3.13 -14 1.26 -11 5.29 -8 2.04 21 1.08 14
2.08 7.39 5.66 -8 3.15-14 1.31-11 5.66 -8 2.20 21 1.25 14
— 2.10 7.33 6.03 -8 3.16 -14 1.41-11 6.03 -8 2.35 21 1.42 14
< >_‘ 2.11 7.29 6.24 -8 3.17 -14 1.44 -11 6.25 -8 2.44 21 1.563 14
>" — 2.12 7.26 6.44 -8 3.18 -14 1.49 -11 6.44 -8 2.52 21 1.63 14
O 23] 2.13 7.22 6.67 -8 3.18 -14 1.55 -11 6.67 -8 2.62 21 1.75 14
Qd p— 2.14 7.17 6.93 -8 3.19 -14 1.60 -11 6.93 -8 2.73 21 1.89 14
S5l @) 2.15 7.12 7.21 -8 3.20 -14 1.63 -11 7.21 -8 2.85 21 2.05 14
: o 2.16 7.06 7.53 -8 3.21 -14 1.67 -11 7.53 -8 2.98 21 2.24 14
—~ & 2.161 7.05 7.57 -8 3.21 -14 1.67 -11 7.57 -8 3.00 21 2.27 14
2.162 7.05 7.58 -8 3.21 -14 1.67 -11 7.58 -8 3.01 21 2.28 14
'&“2 2.163 7.04 7.63 -8 3.21-14 1.67 -11 7.63 -8 3.02 21 2.31 14
Yo 2.164 7.03 7.68 -8 3.21 -14 1.68 -11 7.68 -8 3.04 21 2.34 14
I; 2.165 7.02 7.72 -8 3.21 -14 1.71 -11 7.73 -8 3.06 21 2.36 14
au o 2.166 7.01 7.717 -8 3.21 -14 1.71 -11 7.77 -8 3.08 21 2.39 14
w% o 2.167 7.00 7.82 -8 3.21 -14 1.72 -11 7.82 -8 3.10 21 2.42 14
9 Z 2.168 7.00 7.83 -8 3.21 -14 1.72 -11 7.83 -8 3.10 21 2.43 14
E§ 2.169 6.98 791 -8 3.21 -14 1.72 -11 7.92 -8 3.14 21 2.49 14
& 2.170 6.97 7.96 -8 3.21 -14 1.73 -11 7.96 -8 3.16 21 2.62 14
2.171 6.96 8.01 -8 3.21 14 1.73 -11 8.01 -8 3.18 21 2.65 14

2,172 6.93 8.14 -8 3.21 -14 L77-11 8.14 -8 3.23 21 2,63 14
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Above 2 K no direct measurements of 4/k have been made. Experiments by Henshaw & Woods
(1961) valid near the roton minimum show that 4/ falls as 7, is approached, but the line width of
the scattered neutrons becomes so broad that a large experimental uncertainty remains. We have,
therefore, chosen 4/k to be that value which, on the Landau theory ofindependent quasi-particles,
gives the observed value of p, near the A-point, namely

__ 2uiphe kT
C3(em)E(kT)EE

P (A2)
assuming po/f = 19.1nm~" and u = 0.16m are independent of temperature. In the absence of
better data, this seems to be the most consistent procedure we can follow, but it should be
emphasized that the values of 4/k above 2K are, in fact, fictitious.

The roton densities in column seven of table A 2 are calculated from the values of 4/k by the

relation Ny = 3kTpn/p3. (A3)

Although the preceding relation breaks down for high densities of excitations, it is interesting that
N; stays considerably lower than the atomic density (= p/m) consistent with the notion that each
roton involves a number of atoms in its motion. Values of N, chosen in this way are reasonably
consistent with experimental values of py down to 1K. Below 1K only theoretical values are
available because of free path effects.

Table A 2 lists the vortex line energy loss coefficient o in column six, and the roton, 3He, and
phonon parts of that coefficient: @ = ooy, (A4)
These coeflicients were introduced by Rayfield & Reif (1964) in the following way. If & is the
total drag force on a vortex ring and %’ the drag force per unit length of line, then the relations
among &, #', D and f are given by

F = 2nRF’
= 2wRDy
= fptv
= 1Dk[In (8R/a) — 1]
= of[In (8R/a) — }]. (A5)
Thus D =2ajx and f = da(mw/psk®)}, (A 6)

which relates Hall’s (1960) drag coefficient and the dynamical friction constant of the present
theory to . Rayfield & Reif then consider the detailed kinetic evaluation of ar, a3 and «;, in an
appendix to their work. They derive the expressions

2

Oy = %—-%pﬁ eIkt Tros (A 7)

oy = 3x(2tm*kT) 2 nyogy, (48)
T8k (kT\4

a = éﬁﬁ(‘u?) oo oY

Analysis of their experiments produced the following values for the collision cross-sections:

0y = 0.95nm, o0y = 1.83nm, o, = 0.03nm. (A 10)
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The effective mass of a solvated 3He atom is m* = 2.5msy, and 7, is the number density of
solvated 3He atoms, which we have taken as (ny/n,) = 1.4 x 107, a typical concentration of 3He
present in well helium in the United States. The velocity of sound #; decreases slowly as 7'
increases in the He1r temperature region. An examination of the numbers in table A 2 shows
that dissolved 3He atoms dominate the drag below 0.4 K, rotons, phonons, and 3He atoms are
roughly equally important at 0.5 K, and above 0.7 K rotons dominate.

The effects of doping by adding ®He can be estimated by modifying n,/n, in the relation for o,
up to the point where the concentration may no longer be considered dilute, and phase separation
effects occur.

Application of external pressure will modify these coefficients. The variation of parameters
with pressure factors is known only roughly. We use

tto = 0.16(1—0,0217P) m, (A11)
Do/t = 19.1(1+0.0029P) nm—, (A12)
A(T,P) = A(T,0) (1-0.0075P), (A13)

where P is the applied pressure in atmospheres. The velocity of sound is a function of pressure
(see, for example, Donnelly 1967, p. 238); the effective mass m* for 3He also increases with
pressure (see, for example, Wilks 1967, p. 471).
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